在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
簡易方程教學(xué)反思不足篇一
在學(xué)習(xí)中,我以多媒體中天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺活動是獲取真知的有效途徑,通過以上的活動,學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。
在課堂上學(xué)生對用等式的性質(zhì)來解方程感到很陌生,在他們原有的經(jīng)驗中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。
在整節(jié)課的教學(xué)中,其實學(xué)生是非常主動的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。
新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑
1、從教材的編排上,整體難度下降,有意避開了,形如:45—x=23 24÷x =6等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)x前面是減號或除號的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強調(diào)學(xué)生不會列出x在后面的方程,我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答x在后面這類方程的解答方法,就是等號二邊同時加上x,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補充x前面是除號或減號的方程的解法。要教他們列方程時怎么避免x前面是除號或減號的方程的出現(xiàn)等等。
簡易方程教學(xué)反思不足篇二
教材第65頁例1。練習(xí)十二的第1——3題。
1.學(xué)生能根據(jù)等式的基本性質(zhì)解形如ax±b=c的方程,初步學(xué)會列方程解決一些簡單的實際問題。
2.培養(yǎng)學(xué)生抽象概括的能力,發(fā)展學(xué)生思維靈活性,進一步提高學(xué)生的分析能力。
3.學(xué)生感受數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)運用意識與規(guī)范書寫和自覺檢驗的習(xí)慣。
掌握解形如ax±b=c方程的解法。
正確找出數(shù)量間的相等關(guān)系,列出方程。
一、復(fù)習(xí)鋪墊:
1.解方程。
x-2.5=10 0. 4x=12 3.2+x=40
2.根據(jù)下列句子說出其數(shù)量間相等的關(guān)系。
1)女生比男生人數(shù)的3倍少10人。
2)這個月比上個月水電費的2倍多200元。
二、情景導(dǎo)入:
同學(xué)們見過足球吧?(出示1個足球)
(出示例1)一起觀察掛圖,問:圖中的哪些信息是解決“共有多少塊黑色皮?”這個問題所需要的?
三、探究新知:
1.師:要想知道黑色皮有多少塊,就必須了解黑色皮的塊數(shù)和白色皮的塊數(shù)有什么等量關(guān)系?
老師可以用線路圖表示幫助學(xué)生分析題中的等量關(guān)系。
2.請學(xué)生依據(jù)等量關(guān)系式列出方程;還有另外的學(xué)生找到另外的等量關(guān)系式,列方程。
3.師:大家依據(jù)不同的等量關(guān)系列出較復(fù)雜的方程,怎樣解答呢?今天我們就來學(xué)習(xí)“稍復(fù)雜的方程”。(板書課題)
4.探究求解過程。
1)生:我們可以用“黑色皮的塊數(shù)×2-4=白色皮的塊數(shù) ”這個等量關(guān)系式列方程,可以怎么解呢?
2)強調(diào):把2x看作一個整體,先求出2x等于多少,再求出x等于多少。
3)最后求出 x=12,還要檢驗12是不是這個方程的解。(學(xué)生在黑板上展示解方程的步驟)
4)2x-20=4 這樣的方程能轉(zhuǎn)化成我們原來學(xué)過的簡單的方程再解答嗎?(在黑板上展示方程的解法步驟)
5)師:同學(xué)們真了不起,這幾個同學(xué)解答較復(fù)雜的方程都是先轉(zhuǎn)化成簡單的方程,然后用學(xué)過的知識去解決。請同學(xué)們不要忘記,最后要檢驗結(jié)果是否正確。
5.大家在用方程解決問題的時候,有什么共同特點嗎?步驟是什么呢?
(生答完特點后,師生共同總結(jié)列方程解決問題的步驟:
① 弄清題意,找出未知數(shù)用x表示;
② 分析、找出數(shù)量間的相等關(guān)系,列方程;
③ 解方程;
④ 檢驗并寫答語。)
四、鞏固拓展:
1.p66 第1題 解下列方程 3x+6=18 2x-7.5=8.5 16+8x=40 4x-3x9=29
2.p66第2題
五、全課總結(jié):
本節(jié)課你有什么收獲?
作業(yè):p66 3
板書設(shè)計: 稍復(fù)雜的方程
例1 解:設(shè)共有x塊黑色皮。
黑色皮塊數(shù)x2-4=白色皮塊數(shù)
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
答:共有12塊黑色皮。
課后小記:這節(jié)課由于有了前面的幾節(jié)課對等量關(guān)系的訓(xùn)練,在根據(jù)老師出示的線段圖,學(xué)生很快就找到了等量關(guān)系,列出了方程,方程的求解過程就是本節(jié)課的重點內(nèi)容,一定要反復(fù)的請學(xué)生說,達到都會的結(jié)果。
簡易方程教學(xué)反思不足篇三
本課的教學(xué)重點是感悟用字母表示數(shù)的意義,能用含有字母的式子表示簡單的數(shù)量關(guān)系。我由視頻導(dǎo)入,通過撲克牌,讓學(xué)生自主發(fā)現(xiàn),字母可以表示數(shù),并在一定的情境中表示一個確定的數(shù)。提出:新學(xué)習(xí)的內(nèi)容里面的字母還表示一個確定的數(shù)嗎?讓學(xué)生帶著這樣一個疑問進入新課。
在教學(xué)的整個過程中,我以學(xué)生感興趣的哆啦a夢和時光機貫穿始終。兒歌這一環(huán)節(jié)讓學(xué)生再次感受用字母表示數(shù)的優(yōu)越性。介紹數(shù)學(xué)家韋達,讓學(xué)生感受悠久的數(shù)學(xué)文化。最后欣賞生活中的字母圖片,讓學(xué)生感受數(shù)學(xué)來源于生活,并服務(wù)于生活。
整個課堂趣味性十足,環(huán)節(jié)顯得不那么枯燥。但也有不足之處:
(1)在讓學(xué)生用一個式子表示出爸爸的年齡時,我提的問題不具有引導(dǎo)性。所以,我在巡視的時候,能列出式子的同學(xué)很少。
(2)在練習(xí)這一環(huán)節(jié),我只關(guān)注了學(xué)生做題的結(jié)果,忽略了學(xué)生做題的過程。應(yīng)該讓他們自己說一說做題的思路,過程。
(3)在小結(jié)的時候,我提的問題有點抽象,不夠直白,學(xué)生不太明白什么意思,所以很少有學(xué)生能答上來。
簡易方程教學(xué)反思不足篇四
現(xiàn)行第九冊數(shù)學(xué)是新課程標(biāo)準(zhǔn)教材實施改革新內(nèi)容,其中的利弊在于:
1、教改方向有點聚向七年級的教學(xué)方法,意圖是與七年級的教學(xué)接軌,這種設(shè)計本來是一件好事,讓小學(xué)生盡快接受初中一年級(七年級)教學(xué)方法,并為七年級打下良好的學(xué)習(xí)基礎(chǔ)。
2、課程改革改在五年級第一學(xué)期就有點不夠恰當(dāng)了,因為五年級第一學(xué)期既沒有學(xué)約分,更沒有學(xué)六年級的倒數(shù),這樣使教師教起來非常困難,學(xué)生對這個知識的掌握也十分艱難。如:解方程:20÷2x=10如果用舊知識來解答是非常容易的,是根據(jù)“除數(shù)=被除數(shù)÷商”,就可以求出2x。再根據(jù)“一個因數(shù)=積÷另一個因數(shù)”就可以求出x了。
而新教材的教法是方程兩邊同時×2x,先把方程左邊的2x消去,而20÷2x×2x從小學(xué)的算理上講,應(yīng)該是從左往右算,(在三至五年級學(xué)混合運算都是這樣要求學(xué)生計算的)這樣就會使學(xué)生在心理上出現(xiàn)矛盾,很難接受這種算法;即使學(xué)生接受了這種算法,方程的右邊出現(xiàn)了10×2x,這時又要在方程的兩邊同時除以10,便得到2=2x,再把2x和2調(diào)換位置,成為2x=2,然后再方程兩邊同時除以2,才求出x=1,這種算法既費時,對成績中等以下的學(xué)生又難理解,就會導(dǎo)致相當(dāng)部分學(xué)生對這部分知識落下,并對今后的學(xué)習(xí)會都產(chǎn)生厭學(xué)情緒,不利于小學(xué)生對知識的掌握,更激發(fā)不起學(xué)生學(xué)習(xí)的積極性。
3、在稍復(fù)雜的方程的內(nèi)容安排上也欠妥。在這一內(nèi)容上,學(xué)習(xí)解稍復(fù)雜的方程的方法和列方程解應(yīng)用題同時進行,在同一節(jié)課要解決兩個對于小學(xué)生來說都是難點的學(xué)習(xí)內(nèi)容,至于教師是沒問題的,但對學(xué)生來說難度就大了,首先,前面所說的解方程是比較簡單的方程,相當(dāng)部分學(xué)生學(xué)得一塌糊涂,再進行學(xué)習(xí)稍復(fù)雜的方程更難掌握。
其次,正是有稍復(fù)雜的方程解答方法不能完全掌握,在學(xué)生的心理上就有解不開的結(jié),所以對怎樣運用好的方法去進行列出解應(yīng)用題的方程,那就更難掌握,因此,有部分學(xué)生把這一知識采用的學(xué)習(xí)方法的放棄,這就不利于學(xué)生的學(xué)習(xí),更不能達到為七年級打好基礎(chǔ)的目的。
以上三點是本人在教簡易方程中感受最深的淺見,不知各位同行是否有這種感受,請各位同行多提這新教材好教學(xué)方法,本人樂意接受。謝謝!
簡易方程教學(xué)反思不足篇五
在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識,效果較好。
出示例題2,小組合作學(xué)習(xí),討論:①你是怎樣理解圖意的?②你是如何列方程的?③你是根據(jù)什么解方程的?④怎樣檢驗方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。指名回答,說說自己的分析。你對他的分析有什么要問的嗎?教師總結(jié)解題關(guān)鍵。
教學(xué)例3時,讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。
最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識?解方程的關(guān)鍵是什么?
充分練習(xí),進行思維訓(xùn)練,設(shè)計有趣的習(xí)題“幫小兔找家”:4x-12=203x=15x+7=152x+3×2=16
18-2x=215÷3+4x=25
鞏固知識,激發(fā)興趣。
簡易方程教學(xué)反思不足篇六
出示例題:6x-6.8×2=20
師:請你觀察一下這道方程和我們原來所學(xué)的方程有什么不一樣?
生:它比原來多了一個6.8×2。
生:它比我們原來所學(xué)的方程多了一步運算。
師:你回答的非常好,這個方程比剛才解答的方程要多一步計算,這就是今天要學(xué)習(xí)的解簡易方程。(板書課題)
評析:
“一切真理都要讓學(xué)生自己去獲得,由他重新發(fā)明,而不是草率地傳遞給他。”為此,我在教學(xué)中通過讓學(xué)生對新舊知識進行比較,讓他們自己去獲取新知。繼而在教師的引導(dǎo)下嘗試求6x-6.8×2=20的解。
我知道在前面已復(fù)習(xí)了ax土bx=c的方程,為推導(dǎo)求ax土b=c(b表示兩數(shù)的積)的方程作鋪墊;例題不但承接了上節(jié)課的內(nèi)容,而且引出了本節(jié)課的新內(nèi)容。這兩道題,幫助學(xué)生找到新舊知識最近的連接點,為新知的學(xué)習(xí)做好鋪路架橋的工作。
教學(xué)實錄:
師:這道題是6x減去什么的差等于20,你覺得這道題開始要怎樣解?
生:應(yīng)先算6.8×2。
師:為什么要先算6.8×2?
生:因為前面是減法,后面是加法,我們應(yīng)該按照四則混合運算的順序先乘后減,所以要先算6.8×2。
生:先算6.8×2就可以使方程變?yōu)?x-13.6=20,又回到了我們原來所學(xué)的方程。
生:因為在這條方程中6.8×2可以先算出來,所以要先算。
師:這兩位同學(xué)很會動腦筋也都觀察的非常仔細。解這個方程時,按運算順序能先算的一步就要先算出來,然后再求方程的解,其中又把6x暫時看做一個數(shù)。
師:現(xiàn)在就請一位同學(xué)上黑板來演示一遍,看這樣算行不行?其他同學(xué)也請自己在下面試試看。
同學(xué)們踴躍地舉起了手。
師:你們覺得他做的對嗎?做的完整嗎?
生:我覺得他做的是對的,我也做到這么多。
同學(xué)們都在那里點頭稱是。
師:再仔細看看!
同學(xué)們感到很疑惑,一個個皺緊了眉頭。沉默片刻,突然有一只小手舉了起來。
生:他的答案是正確的,但是我覺得他做的不完整。
學(xué)生被這個說法吸引了起來,頓時三三兩兩地舉起了手。
生:因為他還沒有檢驗。
師:你們同意嗎?
生齊答:同意。
師:對了,在解方程時我們一定要養(yǎng)成自覺檢驗的習(xí)慣,以此來檢查方程的解對不對。
讓學(xué)生在自己的本子上邊回憶邊檢驗,然后同桌互相檢查檢驗的過程。
第一層:操作嘗試,理解概念
為了讓學(xué)生更好地掌握怎樣去解答ax土b=c(b表示兩數(shù)的積)的方程,我讓學(xué)生自己去探究。
第二層:潛移默化,推導(dǎo)方法
有了上一層的前提教學(xué),在這一層,我就可以放手讓學(xué)生嘗試解答例題了。并提出問題你覺得這道題開始時要怎樣去解?為什么?該怎樣檢驗方程的解?
其實這些“想”的過程正是教師要教的過程,也是學(xué)生解題的的思考過程。這些自學(xué)提綱充當(dāng)了學(xué)生自學(xué)的“領(lǐng)路人”,學(xué)生通過提示,再思考該填上的內(nèi)容,新知識便順利地掌握了。
簡易方程教學(xué)反思不足篇七
解方程是數(shù)學(xué)領(lǐng)域里一塊兒重要內(nèi)容,在實際生活中,學(xué)會了列方程解決問題之后,很多不易用算術(shù)方法解答的習(xí)題,卻能列方程很容易地解答出來,這足以說明列方程解決問題比算術(shù)法解決問題有非常明顯的優(yōu)越性。
今年我教的是四年級,所用教材是青島版五四制教材,第一單元就出現(xiàn)了解方程的內(nèi)容,這部分教材我已經(jīng)教學(xué)了四遍了,按理說這第五次教學(xué)這部分內(nèi)容應(yīng)該是易如反掌、揮灑自如,可是面對新教材的設(shè)計,我這個五年不教學(xué)高年級的老師卻有了很大困惑----本教材的教學(xué)設(shè)計打破了傳統(tǒng)的教學(xué)方法,而出乎我預(yù)料的則是借用天平演示使學(xué)生感悟“等式”,知道“等式兩邊都加上或減去都乘或除以同一個非零的數(shù),等式仍然成立”這個規(guī)律,從而使學(xué)生進一步從真正意義上理解方程的意義,并學(xué)會運用等式的性質(zhì)解方程。在以前幾輪教材中,學(xué)習(xí)解方程之前都是先要求學(xué)生熟練掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差;減數(shù)=被減數(shù)-差;被除數(shù)=商×除數(shù);除數(shù)=被除數(shù)÷商等關(guān)系式來求出方程的解,就連我自己小時候?qū)W習(xí)的解方程也都是根據(jù)加減、乘除法各部分之間的關(guān)系求方程的解的。
開始我有些懷疑,以為只有青島版五四制這個版本的教材利用了等式的性質(zhì)教學(xué)的,于是急切的打開電腦找到各種版本的電子教材翻看這部分內(nèi)容,卻發(fā)現(xiàn)各種版本的教材設(shè)計思路是一樣的,都是先學(xué)習(xí)等式的基本性質(zhì),接著再運用等式的基本性質(zhì)解方程。為了徹底弄明白教材的編寫意圖,我又找到了這幾個版本的教材所配套的教師教學(xué)用書翻看,新教材編寫者大致都是這樣解釋的:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減、乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。看了這些內(nèi)容,我才從思想上認(rèn)可了這種設(shè)計思路,原來是為了使小學(xué)教學(xué)解方程和中學(xué)教學(xué)解方程的方法保持一致。
理解了教材的設(shè)計意圖,我開始強迫自己扭轉(zhuǎn)老的教學(xué)思路。結(jié)果學(xué)生因為是初次接觸,課堂上學(xué)習(xí)的竟是那樣的有滋有味。但在后面的教學(xué)中,我漸漸發(fā)現(xiàn)采用等式的基本性質(zhì)解方程給學(xué)生帶來的竟然是局部的銜接,而存在局部的銜接對學(xué)生會更困難。從教材的編排上,整體難度雖然有所下降,卻把用等式的性質(zhì)解方程的方法單一化了。教材有意避開了形如a—x=b a÷x=b等類型的題目,不教學(xué)此類方程的求解方法,因為這類題目如果采用等式的性質(zhì)來解非常麻煩。很顯然采用等式的性質(zhì)這種方法教學(xué)小學(xué)階段的解方程目前存在著很大的局限性。
但在教學(xué)列方程解決實際問題時,我們又不能避免學(xué)生在列方程時,依然出現(xiàn)形如a-x=b和a÷x=b的方程,特別是我們不能刻意地給學(xué)生強調(diào)不能列出x在后面做減數(shù)或做除數(shù)的方程,如果這樣強調(diào),學(xué)生心中會存在很大的疑惑,當(dāng)學(xué)生列出這樣的方程時,我們更頭痛于學(xué)生求解能力的局限性。
鑒于以上原因,課堂上我采用了新老教學(xué)思路結(jié)合使用的方法,先從教材中的新思路運用等式的基本性質(zhì)教會孩子解較簡單的方程,以便于日后初中學(xué)習(xí)時順利接軌,同時對于初中學(xué)習(xí)“移項”也能順利接收。但是面對現(xiàn)在四年級孩子的思維及接受能力,我再利用老教材的教學(xué)思路“加減、乘除法各部分之間的關(guān)系”教給孩子解方程,至少這樣能讓我的學(xué)生會解各種類型的方程,特別是有利于孩子們列方程解決實際問題,他們不會再被“以乘代除”、“以加代減”的思路困擾著列方程,并且列出來還能順利解這個方程。
我個人以為,這樣用新舊方法結(jié)合著教學(xué),既能讓學(xué)生為以后的學(xué)習(xí)做好銜接,形成綠色的通道,同時又體現(xiàn)解決同一問題方法、思路的多樣性。通過學(xué)生的課堂作業(yè),我發(fā)現(xiàn)教學(xué)效果出奇的好。
通過解方程這部分內(nèi)容的教學(xué),我感到不論你的教齡有多長,你對同一教學(xué)內(nèi)容教學(xué)了有幾遍,每次教學(xué)都需要教師靜下心來好好的研究教材教法,這樣才能用最適合學(xué)生未來發(fā)展的方法去教學(xué)生。
簡易方程教學(xué)反思不足篇八
本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點服務(wù),因此我進行了大膽的嘗試,在講解方程的解時,給學(xué)生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。
1.本課主要對解方程進行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!
2、通過本課的作業(yè)檢測,有少量學(xué)生還是對本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。
3、學(xué)生對于方程的書寫格式掌握的很好,這一點很讓人欣喜.
人教版五年級數(shù)學(xué)上冊《解方程》教學(xué)反思
解方程是數(shù)學(xué)領(lǐng)域里一個關(guān)鍵的知識,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。
而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點。在教這單元之前,我一直困惑解方程要采用初中的“移項解題,還是運用書本的“等式性質(zhì)解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運算之間的關(guān)系解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運用“移項解題,學(xué)生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)解題時,在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運算之間的關(guān)系老教材的方式改變,必有他的理由,能用嗎?
困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的.要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。
簡易方程教學(xué)反思不足篇九
在教現(xiàn)行人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第九冊《簡易方程》時,發(fā)現(xiàn)現(xiàn)行教材與以往版本不同:
以往的教法是利用“兩個加數(shù)相加,求一個加數(shù)就用和減去另一個加數(shù),即:加數(shù)=和-加數(shù);兩個因數(shù)相乘,求一個因數(shù)就用積除以另一個因數(shù),即:因數(shù)=積÷因數(shù)”;
現(xiàn)行的教法和初中類似,即:解方程時利用方程兩邊同時加上或減去一個數(shù)或同時乘以或除以一個不為零的數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項與合并同類項,思想方法卻是相同的。
在教學(xué)中發(fā)現(xiàn)小學(xué)生對這種方法掌握較困難,主要表現(xiàn)在:
第一,用字母表示數(shù)不好接受,不易理解,也不習(xí)慣;
第二,用代數(shù)式表示一個得數(shù)或結(jié)果不理解;
第三,字母與數(shù),字母與字母之間的簡單運算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個數(shù)。
我們知道算式思維與方程思維是兩種不同的思考方法,在一些復(fù)雜的問題中用算式很難解出,用方程卻簡單的多,現(xiàn)行小學(xué)教材中有提升方程教學(xué)的意思,旨在培養(yǎng)學(xué)生的思考能力,便于與初中銜接。
教學(xué)實踐中我們發(fā)現(xiàn)通過練習(xí)學(xué)生還是可以掌握的很好的。
簡易方程教學(xué)反思不足篇十
今天早上在庫溝小學(xué)聽了張福華老師的《簡易方程的整理和復(fù)習(xí)》這節(jié)復(fù)習(xí)課。這是我第一次聽復(fù)習(xí)課,以往只是從教學(xué)策略上了解復(fù)習(xí)課的教學(xué)流程,當(dāng)今天真真正正的傾聽了一節(jié)復(fù)習(xí)課后,感受頗深,所學(xué)甚多,只奈何有言吐不出,下面就簡單說一些聽完這節(jié)課的體會。
首先,張老師的語言簡練干脆,善于利用名言名句。
在課的開始,大屏幕上就展示出了俄國烏申斯基的一句話:“裝著一些片段的,沒有聯(lián)系的知識的頭腦,就像一個亂七八糟的倉庫,主人從那里是什么也找不出來的。”這句話的展示,讓學(xué)生一下子就了解了整理的重要性,也了解了這節(jié)課的目的所在。在回顧整理,構(gòu)建網(wǎng)絡(luò)這一環(huán)節(jié),張老師在讓學(xué)生自己看課本例題的知識點時又說了一句“不動筆墨不讀書”,提醒了學(xué)生看例題時可以適時的進行批畫,將遺忘的知識點突出顯示出來。在課的最后又課件展示了韋達和愛因斯坦的名言警句。
其次,目錄歸納知識點,清楚明了。
我想所有的老師都會頭疼復(fù)習(xí)某一單元或某一冊課本時知識點的歸納,只奈何沒有更好的方法可以把所有知識點系統(tǒng)的展現(xiàn)給學(xué)生。本節(jié)課張老師的方法讓我眼前一亮,目錄展示法,讓所有知識點的區(qū)別和聯(lián)系清楚的擺了出來,方便了學(xué)生的回顧和整理。
最后,練習(xí)充實有趣,層次分明。
闖關(guān)形式的練習(xí)提高了學(xué)生的積極性,激發(fā)了學(xué)生的好勝心。在一,二,三的闖關(guān)中,依次將基礎(chǔ)知識點,重難點進行了練習(xí),穩(wěn)固。學(xué)生在回答闖關(guān)的答案時,張老師經(jīng)常會問一個為什么,引導(dǎo)學(xué)生對知識點進行再回顧。例如,在一名學(xué)生回答bx8等于8b時,問為什么不是b8?在學(xué)生回答axa=a的平方時,問為什么不是2a?看似不經(jīng)意的詢問,卻鞏固了細微處的知識點。
當(dāng)然,張老師的課還有許多值得我學(xué)習(xí)的地方。例如,創(chuàng)設(shè)了有效地復(fù)習(xí)情景,親和力強,能及時喚起回憶,將零散的知識系統(tǒng)化等等。通過這節(jié)課,讓我更清楚的了解了復(fù)習(xí)課的教學(xué)模式,對以后上好復(fù)習(xí)課有了更多的信心。