作為一位不辭辛勞的人民教師,常常要根據教學需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。那么教案應該怎么制定才合適呢?這里我給大家分享一些最新的教案范文,方便大家學習。
高二上數學教案高一數學課教案篇一
1.知識與技能
(1)理解流程圖的順序結構和選擇結構。
2.過程與方法
學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。
3情感、態度與價值觀
學生通過動手作圖,.用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想程序化思想,在歸納概括中培養學生的邏輯思維能力。
重點:算法的順序結構與選擇結構。
難點:用含有選擇結構的流程圖表示算法。
學法:學生通過動手作圖,.用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。
教學用具:尺規作圖工具,多媒體。
(一)、問題引入 揭示課題
例1 尺規作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用文字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
(二)、觀察類比 理解課題
1、 投影介紹流程圖的符號、名稱及功能說明。
輸入輸出框 輸入輸出操作指向線 指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執行的一個算法
流程圖:
(2)選擇結構
對條件進行判斷來決定后面的步驟的結構
流程圖:
3.用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式 當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式 求s
③輸出s
流程圖
(2) 已知函數 對于每輸入一個x值都得到相應的函數值,寫出算法并畫流程圖。
算法:(語言表示)
① 輸入x值
③輸出y的值
流程圖
小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作 經歷課題
1.用流程圖表示確定線段a.b的一個16等分點
2.分析講解例2;
分析:
思考:有多少個選擇結構?相應的流程圖應如何表示?
流程圖:
(四)歸納小結 鞏固課題
1.順序結構和選擇結構的模式是怎樣的?
2.怎樣用流程圖表示算法。
(五)練習p99 2
(六)作業p99 1
高二上數學教案高一數學課教案篇二
理解并掌握雙曲線的幾何性質,并能從雙曲線的標準方程出發,推導出這些性質,并能具體估計雙曲線的形狀特征。
二、預習內容
1、雙曲線的幾何性質及初步運用。
類比橢圓的幾何性質。
2。雙曲線的漸近線方程的導出和論證。
觀察以原點為中心,2a、2b長為鄰邊的矩形的兩條對角線,再論證這兩條對角線即為雙曲線的漸近線。
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中
課內探究
1、橢圓與雙曲線的幾何性質異同點分析
2、描述雙曲線的漸進線的作用及特征
3、描述雙曲線的離心率的作用及特征
4、例、練習嘗試訓練:
例1。求雙曲線9y2—16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。
解:
解:
5、雙曲線的第二定義
1)。定義(由學生歸納給出)
2)。說明
(七)小結(由學生課后完成)
將雙曲線的幾何性質按兩種標準方程形式列表小結。
作業:
1。已知雙曲線方程如下,求它們的兩個焦點、離心率e和漸近線方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2。求雙曲線的標準方程:
(1)實軸的長是10,虛軸長是8,焦點在x軸上;
(2)焦距是10,虛軸長是8,焦點在y軸上;
曲線的方程。
點到兩準線及右焦點的距離。
高二上數學教案高一數學課教案篇三
1、地位、作用和特點:
《__》是高中數學課本第__冊(x修)的第__章“__”的第__節內容。
本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《__》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節的特點之一是__;特點之二是:__。
教學目標:
(1)知識目標:a、b、c
(2)能力目標:a、b、c
(3)德育目標:a、b
教學的重點和難點:
(1)教學重點:
(2)教學難點:
二、說教法:
導入新課新課教學反饋發展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。
1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節教師通過列舉具體事例來進行分析,歸納出,并依據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。
2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。
四、教學過程:
(一)、課題引入:
教師創設問題情景(創設情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。c、講述數學科學的有關情況。)激發學生的探究__,引導學生提出接下去要研究的問題。
(二)、新課教學:
1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。
(三)、實施反饋:
1、課堂反饋,遷移知識(遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。
2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。
五、板書設計:
在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。
六、說課綜述:
以上是我對《__》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。
高二上數學教案高一數學課教案篇四
1.理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
2.掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
體會直角坐標系的作用。
能夠建立適當的直角坐標系,解決數學問題。
新授課
啟發、誘導發現教學.
多媒體、實物投影儀
一、復習引入:
情境1:為了確保宇宙飛船在預定的軌道上運行,并在按計劃完成科學考察任務后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構成的。要出現正確的背景圖案,需要缺點不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創建坐標系?
二、學生活動
學生回顧
刻畫一個幾何圖形的位置,需要設定一個參照系
1、數軸 它使直線上任一點p都可以由惟一的實數x確定
2、平面直角坐標系
在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點p都可以由惟一的實數對(x,y)確定。
3、空間直角坐標系
在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點p都可以由惟一的實數對(x,y,z)確定。
三、講解新課:
1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應滿足:
2、確定點的位置就是求出這個點在設定的坐標系中的坐標
四、數學運用
例1 選擇適當的平面直角坐標系,表示邊長為1的正六邊形的頂點。
變式訓練
變式訓練
例3 已知q(a,b),分別按下列條件求出p 的坐標
(1)p是點q 關于點m(m,n)的對稱點
(2)p是點q 關于直線l:x-y+4=0的對稱點(q不在直線1上)
變式訓練
用兩種以上的方法證明:三角形的三條高線交于一點。
思考
通過平面變換可以把曲線變為中心在原點的單位圓,請求出該復合變換?
五、小 結:本節課學習了以下內容:
1.平面直角坐標系的意義。
2. 利用平面直角坐標系解決相應的數學問題。
六、課后作業: