人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發揮它最大的作用呢?接下來小編就給大家介紹一下優秀的范文該怎么寫,我們一起來看一看吧。
對數函數對數函數篇1
重點是理解對數函數的定義,掌握圖像和性質.
難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質.
對數函數對數函數篇2
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.
(2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.
2.通過對數函數概念的
學習
,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習
,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力.3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美
教育
,調動學生學習
數學
的積極性.?教學建議
教材分析
(1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要
數學
思想的進一步認識與理解.對數函數的概念,圖象與性質的學習
使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習
對數方程,對數不等式的基礎.(2) 本節的
教學重點
是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.(3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點.
教法建議
(1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高
學習
興趣.教學設計示例
對數函數對數函數篇3
一。 引入新課
今天我們一起再來研究一種常見函數.前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.
反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.
提問:什么是指數函數?指數函數存在反函數嗎?
由學生說出
是指數函數,它是存在反函數的.并由一個學生口答求反函數的過程:由
得.又的值域為,所求反函數為.那么我們今天就是研究指數函數的反函數-----對數函數.
2.8對數函數 (板書)
一。 對數函數的概念
1、 定義:函數
的反函數叫做對數函數.由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?
教師可提示學生從反函數的三定與三反去認識,從而找出對數函數的定義域為
,對數函數的。值域為,且底數就是指數函數中的,故有著相同的限制條件.在此基礎上,我們將一起來研究對數函數的圖像與性質.
二.對數函數的圖像與性質 (板書)
1、 作圖方法
提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.
由于指數函數的圖像按
和分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況和,并分別以和為例畫圖.具體操作時,要求學生做到:
(1) 指數函數
和的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).(2) 畫出直線
.(3)
的圖像在翻折時先將特殊點對稱點找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時可提示學生分兩段翻折,在左側的先翻,然后再翻在右側的部分.學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:2、 草圖.
教師畫完圖后再利用投影儀將
和的圖像畫在同一坐標系內,如圖:然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)
3、 性質
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于
軸的右側.(3) 截距:令
得,即在軸上的截距為1,與軸無交點即以軸為漸近線.(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于
軸對稱.(5) 單調性:與
有關.當時,在上是增函數.即圖像是上升的???????????????? 當
時,在上是減函數,即圖像是下降的.之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:
當
時,有;當時,有.學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)
對圖像和性質有了一定的了解后,一起來看看它們的應用.
三.簡單應用? (板書)
1、 研究相關函數的性質
例1.? 求下列函數的定義域:
(1)
?????(2)?? (3)先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.
2、 利用單調性比較大小 (板書)
例2.? 比較下列各組數的大小
(1)
與;????? (2)與;(3)
與;????????? ?(4)與.讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.
三.鞏固練習
練習:若
,求的取值范圍.四.小結
五.作業 略
對數函數對數函數篇4
1、 在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題.
2、 通過對數函數的
學習
,樹立相互聯系,相互轉化的觀點,滲透數形結合,分類討論的思想.3、 通過對數函數有關性質的研究,培養學生觀察,分析,歸納的思維能力,調動學生
學習
的積極性.對數函數對數函數篇5
啟發研討式