作為一位杰出的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學活動。寫教案的時候需要注意什么呢?有哪些格式需要注意呢?以下我給大家整理了一些優(yōu)質的教案范文,希望對大家能夠有所幫助。
七年級有理數(shù)的加減法教案篇一
1.使學生了解有理數(shù)加法的意義。
2.使學生理解有理數(shù)加法的法則,能熟練地進行有理數(shù)加法運算。
3.培養(yǎng)學生分析問題、解決問題的能力,在有理數(shù)加法法則的教學過程中,注意培養(yǎng)學生的觀察、比較、歸納及運算能力。(在教學中適當滲透分類討論思想)
教學重點和難點:
重點:理解有理數(shù)加法法則,運用有理數(shù)加法法則進行有理數(shù)加法運算。
難點:理解有理數(shù)加法法則,尤其是異號兩數(shù)相加的情形。
教學工具和方法:
工具:應用投影儀,投影片。
方法:分層次教學,講授、練習相結合。(采取合作探究式教學方法,讓學生在合作學習中學習知識,掌握方法。)
教學過程:
一、復習引入:
1.在小學里,已經學過了正整數(shù)、正分數(shù)(包括正小數(shù))及數(shù)0的四則運算?,F(xiàn)在引入了負數(shù),數(shù)的范圍擴充到了有理數(shù)。那么,如何進行有理數(shù)的運算呢?
2.問題:[
一位同學沿著一條東西向的跑道,先走了20米,又走了30米,能否確定他現(xiàn)在位于原來位置的哪個方向,相距多少米?
我們知道,求兩次運動的總結果,可以用加法來解答??墒巧鲜鰡栴}不能得到確定答案,因為問題中并未指出行走方向。(大部分同學都會用小學學過的的知識來完成。先給予肯定,鼓勵同學們對小學知識的掌握程度,再鼓勵同學們想想還有沒有其他情況)
[來源:學#科#網]
二、講授新課:
1.發(fā)現(xiàn)、總結(分類):
我們必須把問題說得明確些,并規(guī)定向東為正,向西為負。
(同號兩數(shù)相加法則)
(1)若兩次都是向東走,很明顯,一共向東走 了50米,寫成算式就是: (+20)+(+30)=+50,
即這位同學位于原來位置的東方50米處。這一運算在數(shù)軸上表示如圖:
(2)若兩次都是向西走,則他現(xiàn)在位于原來位置的西方50米處,
寫成算式就是: (―20)+(―30)=―50。
(師生共同歸納同號兩數(shù)相加法則:[來源:z+··+]
同號兩數(shù)相加,取相同的符號,并把絕對值相加)
(異號兩數(shù)相加法則)
(3)若第一次向東走20米,第二次向西走30米,我們先在數(shù)軸上表示如圖:
寫成算式是(+20)+(―30)=―10,即這位同學位于原來位置的西方10米處。
(4)若第一次向西走20米,第二次向東走30米,寫成算式是:(―20)+(+30)=( )。即這位同學位于原來位置的( )方( )米處。
后兩種情形中,兩個加數(shù)符號不同(通常可稱異號),所得和的符號似乎不能確定,讓我們再試幾次(下式中的加數(shù)不妨仍可看作運動的方向和路程):
你能發(fā)現(xiàn)和與兩個加數(shù)的符號和絕對值之間有什么關系嗎?
(+4)+(―3)=( ); (+3)+(―10)=( );
(―5)+(+7)=( ); (―6)+ 2 = ( )。
再看兩種特殊情形:
(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)=( )。
(6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+ 0 =( )。我們不難得出它們的結果。
(師生共同歸納異號兩數(shù)相加法則:
絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值)
(互為相反數(shù)的兩數(shù)相加為零
問題:會不會出現(xiàn)和為0的情況?
(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)= ( )。
師生共同歸納法則3:互為相反數(shù)的兩數(shù)相加得0)
問題:你能有法則來解釋法則3嗎?
學生回答:可以用異號兩數(shù)相加的法則)
((6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+0= ( )。我們不難得出它們的結果。
一般地,一個數(shù)同0相加,仍得這個數(shù))
2.概括:
綜合以上情形,我們得到有理數(shù)的加法法則:
(1) 同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2) 絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
(3) 互為相反數(shù)的兩個數(shù)相加得0;
(4)一個數(shù)同0相加,仍得這個數(shù).
注意:
一個有理數(shù)由符號和絕對值兩部分組成,所以進行加法運算時,必須分別確定和的符號和絕對值.這與小學階段學習加法運算不同。
3.例題:
例:計算:
(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。
解:(1)解原式=―(11―2)=―9;
(2)解原式=+(20+12)=+32=32;
(3)解原式=;
(4)解原式= +(4.3―3.4)=0.9。
4.五分鐘測試:
計算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。
三、課堂小結:
這節(jié)課我們從實例出發(fā),經過比較、歸納,得出了有理數(shù)加法的法則.今后我們經常要用類似的思想方法研究其他問題.
應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號、計算“和”的絕對值兩件事。
(運算的關鍵:先分類,在按法則運算
運算步驟:先確定符號,再計算絕對值
注意問題:要借助數(shù)軸來進一步驗證有理數(shù)的加法法則)
四、課堂作業(yè):
課本:p18:1,2,3。
板書設計:
教學后記:
略
七年級有理數(shù)的加減法教案篇二
一、學生起點分析
學生的知識技能基礎:學生在小學已經學習過算術四則運算,而初中的有理數(shù)運算是以小學算術四則運算為基礎的,不同的是有理數(shù)運算多了一個符號問題。符號法則是有理數(shù)運算法則的重要組成部分,也是學生學習本章知識和今后學習其他與計算有關的內容時容易出錯的知識點之一。
學生活動經驗基礎:在前面相關知識的學習過程中,學生已經經歷了一些數(shù)學活動,感受到了數(shù)的范圍的擴大,能借助生活經驗對一些簡單的實際問題進行有理數(shù)的運算,如計算比賽的得分,計算溫差等等。同時在以前的數(shù)學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定數(shù)學交流的能力。
學生學習中的困難預設:學生學習數(shù)學是一種認識過程,要遵循一般的認識規(guī)律,而七年級的學生,對異號兩數(shù)相加從未接觸過,與小學加法比較,思維強度增大,需要通過絕對值大小的比較來確定和的符號和加法轉化為減法兩個過程,要求學生在課堂上短時間內完成這個認識過程確有一定的難度,在教學時應從實例出發(fā),充分利用教材中的正負抵消的思想,用數(shù)形結合的觀點加以解釋,讓學生感知法則的由來,以突破這一難點。
二、教學任務分析
對于有理數(shù)的運算,首先在于運算的意義的理解,即首先要回答為什么要進行運算。為此,必須讓學生通過具體的問題情境,認識到運算的作用,加深學生對運算本身意義的理解,同時也讓學生體會到運算的應用,從而培養(yǎng)學生一定的應用意識和能力。教科書基于學生學習了相反數(shù)和絕對值基礎之上,提出了本課時的具體學習任務:探索有理數(shù)的加法運算法則,進行有理數(shù)的加法運算。本課時的教學重點是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進行計算,教學難點是異號兩數(shù)相加的法則。教學方法是“引導——分類——歸納”。本課時的教學目標如下:
1.經歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;
2.能熟練進行整數(shù)加法運算;
3.培養(yǎng)學生的數(shù)學交流和歸納猜想的能力;
4.滲透分類、探索、歸納等思想方法,使學生了解研究數(shù)學的一些基本方法。
三、教學過程設計
本課時設計了六個教學環(huán)節(jié):第一環(huán)節(jié):復習引入,提出問題;第二環(huán)節(jié):活動探究,猜想結論;第三環(huán)節(jié):驗證明確結論;第四環(huán)節(jié):運用鞏固;第五環(huán)節(jié):課堂小結;第六環(huán)節(jié):布置作業(yè)。
(一)復習引入,提出問題
活動內容:
1.復習提問:
(1)下列各組數(shù)中,哪一個較大?
(2)一位同學在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點的哪個方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負,該問題用算式表示為 。
活動目的:我們已經熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。這里先讓學生回顧在具體問題中感受正數(shù)和負數(shù)的加法運算。
2.提出問題:
某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分.
如果我們用1個 表示+1,用1個 ,那么 就表示0,同樣 也表示0.
(1)計算(-2)+(-3).
在方框中放進2個 和3個 :
因此,(-2)+(-3)= -5.
用類似的方法計算(2)(-3)+ 2
(3) 3 +(-2)
(4) 4+(-4)
思考: 兩個有理數(shù)相加,還有哪些不同的情形?舉例說明。
引導學生列舉兩個正數(shù)相加,如3 + 2,一個數(shù)和零相加,如0+(-4),4 + 0。
活動目的:通過實際問題情境類比列出兩個有理數(shù)相加的7種不同情形,兩個正數(shù)相加、兩個負數(shù)相加,異號兩數(shù)相加(根據絕對值又可分為三類)、一個加數(shù)為0。進而討論如何進行一般的有理數(shù)加法的運算。
活動的實際效果: 實際問題情境為學生營造了良好的學習氛圍,利于他們積極探究.
(二)活動探究,猜想結論:
上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?
學生分組進行活動,教師關注學生在活動中的表現(xiàn),可以根據學生的實際情況給予適當點撥和引導,鼓勵學生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認識。
對“一起探究”,教師可引導學生按以下步驟思考:
1、觀察列出的具體算式,根據兩個加數(shù)的符號分類:兩個正數(shù)相加、兩個負數(shù)相加,異號兩數(shù)相加(根據絕對值又可分為三類)、一個加數(shù)為0。
2、同號兩數(shù)相加時,和的符號與兩個加數(shù)的符號有怎樣的關系?和的絕對值和加數(shù)的絕對值有怎樣的關系?異號兩數(shù)相加時和的符號與兩個加數(shù)的符號有怎樣的關系?和的絕對值和加數(shù)的絕對值有怎么樣的關系?有一個加數(shù)為0時,和是什么?
3、從中歸納概括出規(guī)律
在學生探究的基礎上,教師引出規(guī)定的加法法則。
在活動中,盡可能讓學生獨立完成,必要時可以交流,教師只在適當?shù)臅r候給予幫助。
同號兩數(shù)相加,取相同的符號,并把絕對值相加。
異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
一個數(shù)同0相加,仍得這個數(shù)。
活動目的:利用分組討論、分類歸納幫助學生理解加法運算過程,同時有利于加法運算法則的歸納。
活動的實際效果:由于采用了圖示的教學手段,在教師的引導下讓學生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語言表達規(guī)律,最后由學生對規(guī)律進行歸納總結補充,從而得出有理數(shù)的加法法則.通過實際問題情境,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學生的分類和歸納概括的能力。
(三)驗證明確結論:
例1 計算下列算式的結果,并說明理由:
(1) 180 +(-10) (2) (-10)+(-1);
(3)5+(-5); (4) 0+(-2)
活動目的:給學生提供示范,進行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進行,一觀察是指觀察兩個加數(shù)是同號還是異號,二確定是指確定“和”的符號,三求和是指計算“和”的絕對值.
活動的實際效果:通過習題,加深了學生對有理數(shù)加法法則的理解。
(四)運用鞏固:
活動內容:
1. 口答下列算式的結果
(1) (+4)+(+3); (2) (-4)+(-3);
(3)(+4)+(-3); (4) (+3)+(-4);
(5)(+4)+(-4); (6) (-3)+0
(7) 0+(+2); (8) 0+0.
活動目的:通過這組練習,讓學生進一步鞏固有理數(shù)加法的法則,達到熟練程度。
2.請同學們完成書上的隨堂練習:
(1)(-25)+(-7); (2)(-13)+5;
(3)(-23)+0; (4)45+(-45)
全班學生書面練習,四位學生板演,教師對學生板演進行講評.
活動目的:習題的配備上,注意到學生的思維是一個循序漸進的過程,所以由易到難,使學生在練習的過程中能夠逐步地提高能力,得到發(fā)展。
活動的實際效果: 通過練習進一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯,活躍課堂氣氛,充分調動學生的積極性,學生在一種比較活躍的氛圍中,解決各種(五)課堂小結:
活動內容:師生共同總結。
1. 兩個有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號,最后確定和的絕對值
2. 有理數(shù)加法法則及其應用。
3. 注意異號的情況。
活動目的:課堂小結并不只是課堂知識點的回顧,要盡量讓學生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學,更要有所思考,達到對所學知識鞏固的目的。
活動的實際效果: 學生對“一觀察,二確定,三求和”的步驟印象較深,達到了本節(jié)課的教學目標。
七年級有理數(shù)的加減法教案篇三
學習目標:
1、理解加減法統(tǒng)一成加法運算的意義.
2、會將有理數(shù)的加減混合運算轉化為有理數(shù)的加法運算.
3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
學習重點、難點:有理數(shù)加減法統(tǒng)一成加法運算
教學方法:講練相結合
教學過程
一、學前準備
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米
記作 +4.5千米 —3.2千米 +1.1千米 —1.4千米
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了 千米.
2、你是怎么算出來的,方法是
二、探究新知
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉化為 .再把加號記在腦子里,省略不寫
如:(-20)+(+3)-(-5)-(+7) 有加法也有減法
=(-20)+(+3)+(+5)+(-7) 先把減法轉化為加法
= -20+3+5-7 再把加號記在腦子里,省略不寫
可以讀作:“負20、正3、正5、負7的 ”或者“負20加3加5減7”.
4、師生完整寫出解題過程
三、解決問題
1、解決引例中的問題,再比較前面的方法,你的感覺是
2、例題:計算-4.4-(-4 )-(+2 )+(-2 )+12.4
3、練習:計算 1)(—7)—(+5)+(—4)—(—10)
三、鞏固
1、小結:說說這節(jié)課的收獲
2、p241、2
3、計算
1)27—18+(—7)—32 2)
四、作業(yè)
1、p255 2、p26第8題、14題
七年級有理數(shù)的加減法教案篇四
1.熟練地進行有理數(shù)加減混合運算,并利用運算律簡化運算;
2. 培養(yǎng)學生的運算能力。
加減運算法則和加法運算律。
省略加號與括號的計算。
電腦、投影儀
一、從學生原有認知結構提出問題
說出-6+9-8-7+3兩種讀法.
二、解決問題
1.計算:(1)-12+11-8+39; (2)+45-9-91+5;
(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;
2.用較簡便方法計算:
-16+25+16-15+4-10.
三、應用、拓展
例1.計算:2/3-1/8-(-1/3)+(-3/8)
練一練:1.p46第1題(1)-(4)題;p46問題解決
例2.當a=13,b=-12.1,c=-10.6,d=25.1時,求下列代數(shù)式的值:
(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;
(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;
(9)(a-c)-(b-d); (10)a-c-b+d.
請同學們觀察一下計算結果,可以發(fā)現(xiàn)什么規(guī)律?
練一練:1.當a=2.7,b=-3.2,c=-1.8時,求下列代數(shù)式的值:
(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.
2.分別根據下列條件求代數(shù)式·-y-z+w的值:
(1)·=-3,y=-2,z=0,w=5;
(2)·=0.3,y=-0.7,z=1.1,w=-2.1;
七年級有理數(shù)的加減法教案篇五
教學目標
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2.能根據有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;
3.三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結合律簡化運算過程;
4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節(jié)教學的重點是依據有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。難點是有理數(shù)的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
(二)知識結構
(三)教法建議
1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。
2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
5.可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結論在有理數(shù)加法運算中未必也成立。
6.在探討導出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。
教學設計示例
有理數(shù)的加法(第一課時)
教學目的
1.使學生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.
2.通過有理數(shù)的加法運算,培養(yǎng)學生的運算能力.
教學重點與難點
重點:熟練應用有理數(shù)的加法法則進行加法運算.
難點:有理數(shù)的加法法則的理解.
教學過程
(一)復習提問
1.有理數(shù)是怎么分類的?
2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學有理數(shù)的加法運算.
(三)進行新課 有理數(shù)的加法(板書課題)
例1 如圖所示,某人從原點0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
1.同號兩數(shù)相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數(shù)相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
2.異號兩數(shù)相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數(shù)的兩個數(shù)相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)=-2.
請同學們想一想,異號兩數(shù)相加的法則是怎么規(guī)定的?強調和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0.
例如(-8)+5……絕對值不相等的異號兩數(shù)相加
8>5
(-8)+5=-( )……取絕對值較大的加數(shù)符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+5=-3.
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
3.一個數(shù)和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
總結有理數(shù)加法的三個法則.學生看書,引導他們看有理數(shù)加法運算的三種情況.
有理數(shù)加法運算的三種情況:
特例:兩個互為相反數(shù)相加;
(3)一個數(shù)和零相加.
每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值.
.(強調“兩個較大”“一個較小”)
解:#formatimgid_13#
解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
1.計算(口答)
(1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.計算
(1)5+(-22);(2)(-1.3)+(-8)
(3)(-0.9)+1.5;(4)2.7+(-3.5)
七年級有理數(shù)的加減法教案篇六
一、教學目標
(一).知識與技能
會利用合并同類項解一元一次方程.
(二).過程與方法
通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學模型的作用.
(三).情感態(tài)度與價值觀
開展探究性學習,發(fā)展學習能力.
二、重、難點與關鍵
(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.
(二).難點:會列一元一次方程解決實際問題.
(三).關鍵:抓住實際問題中的數(shù)量關系建立方程模型.
三、教學過程
(一)、復習提問
1.敘述等式的兩條性質.
2.解方程:4(·- )=2.
解法1:根據等式性質2,兩邊同除以4,得:
·- =
兩邊都加 ,得·= .
解法2:利用乘法分配律,去掉括號,得:
4·- =2
兩邊同加 ,得4·=
兩邊同除以4,得·= .
(二)、新授
公元825年左右,中亞細亞數(shù)學家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內容,然后再回答這個問題.
問題1:某校三年級共購買計算機140臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個學校購買了多少臺計算機?
分析:設前年這個學校購買了·臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2·臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22·(即4·)臺.
題目中的相等關系為:三年共購買計算機140臺,即
前年購買量+去年購買量+今年購買量=140
列方程:·+2·+4·=140
如何解這個方程呢?
2·表示2·,4·表示4·,·表示1·.
根據分配律,·+2·+4·=(1+2+4)·=7·.
這樣就可以把含·的項合并為一項,合并時要注意·的系數(shù)是1,不是0.
下面的框圖表示了解這個方程的具體過程:
·+2·+4·=140
合并
7·=140
系數(shù)化為1
·=20
由上可知,前年這個學校購買了20臺計算機.
上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達到把方程轉化為a·=b的形式,其中a、b是常數(shù).
例:某班學生共60分,外出參加種樹活動,根據任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).
分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應設每一份為·人.
問:本題中相等關系是什么?
答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.
解:設每一份為·人,則甲組人數(shù)為2·人,乙組人數(shù)為3·人,丙組為5·人,列方程:
2·+3·+5·=60
合并,得10·=60
系數(shù)化為1,得·=6
所以2·=12,3·=18,5·=30
答:甲組12人,乙組18人,丙組30人.
請同學們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.
(三)、鞏固練習
1.課本第89頁練習.
(1)·=3.
(2)可以先合并,也可以先把方程兩邊同乘以2.
具體解法如下:
解法1:合并,得( + )·=7
即 2·=7
系數(shù)化為1,得·=
解法2:兩邊同乘以2,得·+3·=14
合并,得 4·=14
系數(shù)化為1,得 ·=
(3)合并,得-2.5·=10
系數(shù)化為1,得·=-4
2.補充練習.
(1)足球的表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個足球的表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少?
(2)某學生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設未知數(shù),列方程,不求解)
解:(1)設每份為·個,則黑色皮塊有3·個,白色皮塊有5·個.
列方程 3·+2·=32
合并,得 8·=32
系數(shù)化為1,得 ·=4
黑色皮塊為43=12(個),白色皮塊有54=20(個).
(2)設全書共有·頁,那么第一天讀了( ·+2)頁,第二天讀了( ·-1)頁.
本問題的相等關系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù).
列方程: ·+2+ ·-1+23=·.
四、課堂小結
初學用代數(shù)方法解應用題,感到不習慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關系是關鍵也是難點,本節(jié)課的兩個問題的相等關系都是:總量=各部分量的和.這是一個基本的相等關系.
合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意·或-·的系數(shù)分別是1,-1,而不是0.
五、作業(yè)布置
1.課本第93頁習題3.2第1、3(1)、(2)、4、5題.
2.選用課時作業(yè)設計.
合并同類項習題課(第2課時)
一、解方程.
1.(1)3·+3-2·=7; (2) ·+ ·=3;
(3)5·-2-7·=8; (4) y-3-5y= ;
(5) - =5; (6)0.6·- ·-3=0.
二、解答題.
2.育紅小學現(xiàn)有學生320人,比1995年學生人數(shù)的 少150人,問育紅小學1995年學生人數(shù)是多少?
3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米.
(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
(2)兩車相向而行,a車提前半小時出發(fā),則在b車出發(fā)后多少小時兩車相遇?相遇地點距離甲地多遠?
4.甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達b地,求a、b兩地之間的距離.
5.一條環(huán)形跑道長400米,甲練習騎自行車,平均每分鐘行駛550米;乙練習長跑,平均每分鐘跑250米,兩人同時、同地、同向出發(fā),經過多少時間,兩人首次相遇?
答案:
一、1.(1)·=4 (2)·=4 (3)·=-5 (4)·=- (5)·=30 (6)·=11
二、2.705人,設育紅小學1995年學生人數(shù)為·人,列方程320= ·-150.
3.(1)4 小時,設出發(fā)后·小時相遇,列方程60·+48·=460.
(2)3 小時,設b車開出后·小時兩車相遇,列方程60 +60·+48·=460.
4.3千米,設a、b兩地間的距離為·千米, - = .
5.1 分鐘,設經過·分鐘兩人首次相遇,列方程550·-250·=400.
解一元一次方程
──移項(第3課時)
一、教學內容
課本第89頁至第91頁.
二、教學目標
(一).知識與技能
理解移項法,并知道移項法的依據,會用移項法則解方程.
(二).情感態(tài)度與價值觀
鼓勵學生自主探索與合作交流,發(fā)展思維策略,體會方程的應用價值.
三、重、難點與關鍵
(一).重點:運用方程解決實際問題,會用移項法則解方程.方程的各項應包括前面的符號
(二).難點:對立相等關系.
(三).關鍵:理解移項法則的依據,以及尋找問題中的等量關系.
四、教學過程 (一)、復習提問
1.運用方程解決實際問題的步驟是什么?
2.解方程: + =10.
(二)、新授
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學生?
分析:設這個班有·名學生,根據第一種分法,分析已知量和未知量間的關系.
1.每人分3本,那么共分出多少本?(3·本)
2.共分出3·本和剩余的20本,可知道什么?
答:這批書共有(3·+20)本.
根據第二種分法,分析已知量與未知量之間的關系.
3.每人分4本,那么需要分出多少本?(4·本)
4.需要分出4·本和還缺少25本那么這批書共有多少本?
答:這批書共有(4·-25)本.
這批書的總數(shù)有幾種表示法?它們之間有什么關系?本題哪個相等關系可以作為列方程的依據?
這批書的總數(shù)是一個定值(不變量)表示它的兩個式子應相等.
根據這一相等關系,列方程:
3·+20=4·-25
本題還可以畫示意圖,幫助我們分析:
從示意圖中容易得到這批書的總數(shù)與分出書、剩下書的關系是:
這批書的總數(shù)=3·+30
這批書的總數(shù)與需要分出的書的數(shù)量、還缺少書的數(shù)量關系是:
這批書的總數(shù)=4·-25
根據兩種分法,這批書的總數(shù)是相等的.
所以,列方程3·+20=4·-25.
注意變化中的不變量,尋找隱含的相等關系,從本題列方程的過程,可以發(fā)現(xiàn):表示同一個量的兩個不同式子相等.
思考:方程3·+20=4·-25的兩邊都含有·的項(3·與4·),也都含有不含字母的常數(shù)項(20與-25)怎樣才能使它轉化為·=a(常數(shù))的形式呢?
要使方程右邊不含·的項,根據等式性質1,兩邊都減去4·,同樣,把方程兩邊都減去20,方程左邊就不含常數(shù)項20,即
3·+20 -4·-20 =4·-25 -4·-20
即 3·-4·=-25-20
將它與原來方程比較,相當于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4·變?yōu)?4·后移到左邊.
像上面那樣,把等式一邊的某項變號后移到另一邊,叫做移項.
方程中的任何一項都可以在改變符號后,從方程的一邊移到另一邊,即可以把方程等號右邊的項改變符號后移到等號的左邊,也可以把方程左邊的項改變符號后移到方程的右邊,注意要先變號后移項,別忘了變號.
下面的框圖表示了解這個方程的具體過程.
3·+20=4·-25
移項
3·-4·=-25-20
合并
-·=-45
系數(shù)化為1
·=46
由此可知這個班共有45個學生.
思考:上面解方程中移項起了什么作用?
答:移項使方程中含·的項歸到方程的同一邊(左邊),不含·的項即常數(shù)項歸到方程的另一邊(右邊),這樣就可以通過合并把方程轉化為·=a形式.
在解方程時,要弄清什么時候要移項,移哪些項,目的是什么?
解方程時經常要合并和移項,前面提到的古老的代數(shù)書中的對消和還原,指的就是合并和移項.
如果把上面的問題2的條件不變,這個班有多少學生改為這批書有多少本?你會解嗎?試試看.
解法1:從原問題的解答中,已求的這個班有45個學生,只要把·=45代入3·+20(或4·-25)就可以求得這批書的總數(shù)為:
345+20=135+20=155(本)
解法2:如果不先求學生數(shù),直接設這批書共有·本,又如何布列方程?這時該用哪個相等關系列方程呢?
這批書共有·本,余下20本,共分出(·-20)本,每人分3本,可以分給 人,即這個班共有 人.
這批書有·本,每人分4本,還缺少25本,共需要(·+25)本,可以分給 人,即這個班共有 人.
這個班的人數(shù)是一個定值,表示它的兩個式子應相等,根據這個相等關系列方程.
= (你會解這個方程嗎?)
即 - = +
移項,得 - = +
合并,得 =
系數(shù)化為1,得·=155.
答:這批書共有155本.
(三)、鞏固練習
1.課本第91頁練習.
(1)解:移項,得6·-4·=-5+7
合并,得 2·=2
系數(shù)化為1,得·=1
(2)解:移項,得 ·- ·=6
合并,得- ·=6
系數(shù)化為1,得·=-24
2.補充練習.
下列移項對不對?如果不對,錯在哪里?應當怎樣改正?
(1)從3·+6=0得3·=6;
(2)從2·=·-1得到2·-·=1;
(3)從2+·-3=2·+1得到2-3-1=2·-·.
解:(1)錯,移項忘了要變號,應改為3·=-6.
(2)錯.原方程中的-1仍然在方程右邊,并沒有移項,所以不要變號,應改為2·-·-=-1.
(3)正確.
四、課堂小結
1.列一元一次方程解決實際問題的關鍵是審題、讀懂題意和找相等關系,今天解決的這個問題的相等關系不明顯,隱含在問題中,表示同一個量的兩個式子是相等.這個相等關系可以作列方程的依據.
2.正確理解移項法則,移項中常犯的錯誤是忘記變號,還要注意移項與在方程的一邊交換兩項的位置有本質區(qū)別,移項的依據是等式性質,在方程的一邊交換兩項的位置是根據交換律.
五、作業(yè)布置
1.課本第93頁至第94頁習題3.2第2、3(3)(4)、6、7、8題.
2.選用課時作業(yè)設計.
移項習題課(第4課時)
一、填空題.
1.在方程的兩邊加上或減去同一項,相當于把原方程中的項______后,從方程的一邊移到另一邊,這種變形叫做________,其依據是________,移項要注意_____.
2.在方程的一邊交換兩項的位置______改變項的符號,而移項______改變符號.
3.解方程·+21=36得·=________;由10·-3=9得·=______.
二、判斷題.(對的打,錯的打)
4.移項就是把方程中的某一項移到等號的另一邊.( )
5.從6·=1,移項,得·=1-6,·=-5. ( )
6.由方程-4+·=7移項得·=7-4. ( )
三、解方程.
7.(1)8=7-2y; (2) = - ;
(3)5·-2=7·+8; (4)1- ·=3·+ ;
(5)2·- =- +2; (6)- ·+6=4·+1;
(7) -·=0.5·-3.
四、解答題.
8.設m=3·-2,n=-2·+3,當·為何值時m=n?
9.甲糧倉存糧1000噸,乙糧倉存糧798噸,現(xiàn)要從兩個糧倉中運走212噸糧食,使兩倉庫剩余的糧食數(shù)量相等,那么應從這兩個糧倉各運出多少噸?
答案:
一、1.合并 移項 合并同類項 變號 2.不 要 3.15 1.2
二、4. 5. 6.
三、7.(1)y=- (2)·= (3)·=-5 (4)·=-
(5)·=1 (6)·= (7)·=3
四、8.·=1 9.207,5,設從甲糧倉運出·噸,1000-·=798-(212-·)
七年級有理數(shù)的加減法教案篇七
1、內容結構分析
《九年義務教育課程標準實驗教科書·數(shù)學》七年級上冊第四章是“幾何圖形初步”.這一章是義務教育第三學段“空間與圖形”領域的起始章,在這一章,將在前面兩個學段學習的“空間與圖形”內容的基礎上,讓學生進一步欣賞豐富多彩的圖形世界,看到更多的立體圖形與平面圖形,初步了解立體圖形與平面圖形之間的關系,并通過線段和角認識一些簡單的圖形,并能初步進行應用.
2、教學重點與難點:
教學重點:
⑴ 數(shù)學與我們的成長密切相關;
⑵ 數(shù)學伴隨著人類的進步與發(fā)展,人類離不開數(shù)學;
⑶人人都能學會數(shù)學,激發(fā)學生學習數(shù)學的興趣;
⑷將實際問題轉化為數(shù)學問題;
⑸積極參與數(shù)學學習活動,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性及數(shù)學規(guī)律的準確性.
教學難點:
⑴體會數(shù)學與我們的成長密切相關;
⑵學生剪圖拼圖的具體操作;
⑶嘗試發(fā)現(xiàn),提出并解決數(shù)學問題,體會與人合作交流的重要性.
3、教學目標:
⑴知識與技能:
直觀認識立體圖形,掌握平面圖形的基本知識;畫出簡單立體圖形的三視圖及平面展開圖,根據三視圖畫出一些簡單的實物圖;進行線段的簡單計算,正確區(qū)分線段、射線、直線.掌握角的基本概念,進行相關運算;鞏固對角得度量及運算知識的掌握,能解決一些實際問題.
⑵過程與方法:
通過對本章的學習,學會在具體的2情境中,抽象概括出數(shù)學原理;學會在解決問題的過程中,進行合理的想象,進行簡單的、有條理的思考;通過小組合作、動手操作、實驗驗證的方法解決數(shù)學問題.
⑶情感、態(tài)度與價值觀:
在探索知識之間的相互聯(lián)系及應用的過程中,體驗推理的意義,獲取學習的經驗.
4、課時分配
4.1幾何圖形 4課時
4.2直線、射線、線段 3課時
4.3角 2課時
4.4課題學習 2課時
小結 3課時
單元測試與評講 3課時
七年級有理數(shù)的加減法教案篇八
一、三維目標。
(一)知識與技能。
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡。
(二)過程與方法。
經歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學生觀察、分析、歸納能力。
(三)情感態(tài)度與價值觀。
培養(yǎng)學生主動探究、合作交流的意識,嚴謹治學的學習態(tài)度。
二、教學重、難點與關鍵。
1、重點:去括號法則,準確應用法則將整式化簡。
2、難點:括號前面是—號去括號時,括號內各項變號容易產生錯誤。
3、關鍵:準確理解去括號法則。
三、教具準備。
投影儀。
四、教學過程,課堂引入。
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
五、新授。
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①
凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②
上面的式子①、②都帶有括號,它們應如何化簡?
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60
七年級有理數(shù)的加減法教案篇九
一、教材分析
(一)教材的地位和作用
方程是初等數(shù)學的基本知識,也是進一步學習一元一次方程,二元一次方程組,一元一次不等式及一元二次方程的基礎.方程在實際問題中的應用,是中學階段應用數(shù)學知識解決實際問題的重要開端,也是增強學生學習數(shù)學、應用數(shù)學意識的重要題材.本節(jié)教材主要起著承前啟后的作用,可以說是小學與中學內容上的銜接點,方法上的分水嶺.
(二)教學內容
“從算式到方程”新教材與原教材的顯著區(qū)別:方程這一部分內容不是按照由定義到解法最后講應用的純數(shù)學體系編排,而是首先從實際問題出發(fā),通過比較算術方法與方程求解的區(qū)別,體會方程的優(yōu)越性,讓學生認識到從算式到方程是數(shù)學的一大進步.然后再通過具體實際問題所列方程,介紹方程等概念.新教材的編寫更加體現(xiàn)了數(shù)學的應用價值.
(三)教學重點難點
由于學生在小學階段已習慣用算術方法解決實際問題,對列方程不太熟練,為了防止學生仍停留在列算式解題的低層上,所以本節(jié)重點確定為:讓學生在討論問題、解決問題的過程中,比較列算式與列方程在分析數(shù)量關系上的區(qū)別及列方程時相等關系的建立.而本節(jié)中學生可能感到困難的仍是實際問題相等關系的建立.
二、目標分析
依據課程標準的要求,確定以下目標:
(一)知識與技能目標
1.了解方程等基本概念.
2.會根據具體問題中的數(shù)量關系列出方程.
(二)過程與方法目標
經歷從具體問題中的數(shù)量相等關系列出方程的過程,體會并認識方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型,滲透數(shù)學建模的思想.
(三)情感目標
讓學生進一步認識到方程與現(xiàn)實世界的密切關系,感受數(shù)學的價值.培養(yǎng)學生獲取信息,分析問題,處理問題的能力。
三、教法與學法分析
根據本節(jié)內容與現(xiàn)實生活聯(lián)系較緊密的特點,教學中選取學生熟悉的、感興趣的背景材料,充分調動學生的學習熱情.并恰當設計各種問題,讓學生在教師的引導下,通過小組討論、相互交流、動手操作、自主探索等活動,獲得知識,積累經驗,體驗成功,積極推行自主學習、合作學習、探究學習等新的學習方式,努力完成教師和學生在教與學活動中角色的轉變.
四、教學過程分析
教學目標 ①進一步理解用等式的性質解簡簡單的(兩次運用等式的性質)一元一次方程
②初步具有解方程中的化歸意識;
③培養(yǎng)言必有據的思維能力和良好的思維品質.
教學重點 用等式的性質解方程。
知識難點 需要兩次運用等式的性質,并且有一定的思維順序。
教學過程(師生活動) 設計理念
復習引入 解下列方程:(1)`+7=1.2; (2)
在學生解答后的講評中圍繞兩個問題:
① 每一步的依據分別是什么?
② 求方程的解就是把方程化成什么形式?
這節(jié)課繼續(xù)學習用等式的性質解一元一次方程。 由于這一課時也是學習用等式的性質解方程,所以通過復習來引入比較自然。
探究新知 對于簡單的方程,我們通過觀察就能選擇用等式的哪一條性質來解,下列方程你也能馬上做出選擇嗎?
例1 利用等式的性質解方程:
0.5`-`=3.4 (2)
先讓學生對第(1)題進行嘗試,然后教師進行引導:
① 要把方程0.5`-`=3.4轉化為`=a的形式,必須去掉方程左邊的0.5,怎么去?
② 要把方程-`=2.9轉化為`=a的形式,必須去掉`前面的“-”號,怎么去?
然后給出解答:
解:兩邊減0.5,得0.5-`-0.5=3.4-0.5
化簡,得
-`=-2.9,、
兩邊同乘-1,得l
`=-2.9
小結:(1)這個方程的解答中兩次運用了等式的性質(2)解方程的目標是把方程最終化為`=a的形式,在運用性質進行變形時,始終要朝著這個目標去轉化.
你能用這種方法解第(2)題嗎?
在學生解答后再點評.
解后反思:
①第(2)題能否先在方程的兩邊同乘“一3”?
②比較這兩種方法,你認為哪一種方法更好?為什么?
允許學生在討論后再回答.
例2(補充)服裝廠用355米布做成人服裝和兒童服裝,成人服裝每套平均用布3.5米,兒童服裝每套平均用布1.5米.現(xiàn)已做了80套成人服裝,用余下的布還可以做幾套兒童服裝?
在學生弄清題意后,教師再作分析:如果設余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5`米,根據題意,你能列出方程嗎?
解:設余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5米,根據題意,得
80`×3.5+1.5`=355.
化簡,得
280+1.5`=355,
兩邊減280,得
280+1.5`-280=355-280,
化簡,得
1.5`=75,
兩邊同除以1.5,得`=50.
答:用余下的布還可以做50套兒童服裝.
解后反思:對于許多實際間題,我們可以通過設未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉化為數(shù)學問題.
問題:我們如何才能判別求出的答案50是否正確?
在學生代入驗算后,教師引導學生歸納出方法:檢驗一個數(shù)值是不是某個方程的解,可以把這個數(shù)值代入方程,看方程左右兩邊是否相等,例如:把`=50代入方程80×3.5+1.5`=355的左邊,得80×3.5+1.5×50=280+75=355
方程的左右兩邊相等,所以`=50是方程的解。
你能檢驗一下`=-27是不是方程 的解嗎? 不同層次的學生經過嘗試就會有不同的收獲:一部分學生能獨立解決,一部分學生雖不能解答,但經過老師的引導后,也能受到啟發(fā),這比純粹的老師講解更能激發(fā)學生的積級性。
這里補充一個例題的目的一是解方程的應用,二是前兩節(jié)課中已學到了方程,在這里可以進一步應用,三是使后面的“檢驗”更加自然。
解題的格式現(xiàn)在不一定要學生嚴格掌握。
課堂練習 ① 教科書第73頁練習 第(3)(4)題。
② 小聰帶了18元錢到文具店買學習用品,他買了5支單價為1.2元的圓珠筆,剩下的錢剛好可以買8本筆記本,問筆記本的單價是多少?(用列方程的方法求解)
建議:采用小組競賽的方法進行評議
小結與作業(yè)
課堂小結 建議:①先讓學生進行歸納、補充。主要圍繞以下幾個方面:
(1) 這節(jié)課學習的內容。
(2) 我有哪些收獲?
(3) 我應該注意什么問題?
②教師對學生的學習情況進行評價。
③思考題 用等式的性質求`:-2`=-5`+7 引發(fā)競爭意識,提高自我評價和自我表現(xiàn)的機會,以達到激發(fā)興趣,鞏固知識的目的。評價包括對學生個人、小組,對學生的學習態(tài)度、情感投入及學習的效果方面等。
本課作業(yè) ① 必做題:教科書第73頁第4(1)、(2)、(4)題;補充:用等式的性質解方程:①3+4`=17;②4- =3
② 選做題:教科書第73頁第4(3)題,第74頁第10題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1、力求體現(xiàn)新課程理念:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知
識經驗基礎之上。教師應激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會……學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者.本設計從新課的引人、例題的處理(包括解題后的反思)、反饋練習及小結提高等各環(huán)節(jié)都力求充分體現(xiàn)這一點.
2、在傳統(tǒng)的課堂教學中,教師往往通過大量地講解,把學生變成任教師“灌輸”的“容
器”,學生只能接受、輸入并存儲知識,而教師進行的也只不過是機械地復制文化知識.新
課程的一個重要方面就是要改變學生的學習方式,將被動的、接受式的學習方式,轉變?yōu)閯邮謱嵺`、自主探索與合作交流等方式.本設計在這方面也有較好的體現(xiàn).
3、為突出重點,分散難點,使學生能有較多機會接觸列方程,本章把對實際問題的討論作為貫穿于全章前后的一條主線.對一元一次方程解法的討論始終是結合解決實際問題進行的,即先列出方程,然后討論如何解方程,這是本章的又一特點.本設計充分體現(xiàn)了這一特點.
七年級有理數(shù)的加減法教案篇十
教學目標:
知識與技能:
認識常見的幾何圖形,并能用自己的語言描述常見幾何圖形的特征
過程與方法:
1.經歷從現(xiàn)實世界中抽象幾何圖形的過程,通過對比,概括出幾何研究的對象
2.在實物與幾何圖形之間建立對應關系,在復習小學學過的平面圖形的基礎上,建立幾何圖形的概念,發(fā)展空間觀念
情感態(tài)度價值觀:
體驗數(shù)學學習的樂趣,提高數(shù)學應用意識。
教學重點:
通過觀察,討論,思考和實踐等活動,讓學生會辨識幾何體
教學難點:
從具體實物中抽象出幾何體的概念
教學方法:
探究式
教學用具:
幾何模型、實物、多媒體
教學過程設計:
一、觀察與思考
師:1.呈現(xiàn)生活中的一些物體:水杯、書、鉛筆、筆筒、乒乓球、蘋果、跳棋、冰激凌筒。2.由老師課前準備或當堂演示一些圖片
提問:這些物體中哪些形狀類似但大小不一樣?
學生積極思考,踴躍發(fā)言。
引導學生簡述自己的理由,用自己的語言描述這些幾何體的特征
師:大家在分類的時候有沒有考慮他們的顏色、材料、質量?
生:沒有
師:我們的生活中有類似形狀的許多物體,而對于這些物體如果不考慮他們的顏色、材料、質量,而只注意它們的形狀、大小和位置,就得到我們今后要學習的幾何圖形。
找出你所認識的幾何圖形
生:圓錐、圓柱、球
師:下面讓我們一起來認識它們,(電腦顯示上面各物體抽象出來的幾何體)配注各幾何體名稱(中、英文)。請同學們觀察,剛才的物體分別類似于屏幕上的哪一種幾何體?
圓柱、圓錐、正方、長方體、棱柱、球
circular、cylinder、circular、cone、cube、cuboid、prism、sphere
生:思考,并作出回答
師:讓我們一起來回想一下平時的日常生活中所見到過的哪些物體的形狀類似于以上的幾何體,(在實物與幾何體模型之間建立對應關系)。
二、做一做
師:將書上p3的圖打到屏幕上,同學們一起做,鞏固概念
三、一起探究
1.電腦演示七種幾何體,同學們說出它們的名稱
2.思考,在上述幾何體中,有哪些是我們學過的平面圖形?
學生思考一段時間后,同桌交流,將部分幾何體拆分,以達到讓學生認識幾何圖形與平面圖形的區(qū)別的目的。
進一步讓學生思考:
(1)立體圖形和平面圖形的區(qū)別是什么?
(2)幾何圖形分幾部分?
四、小結
同學們說說這節(jié)課的收獲是什么?
收獲:(1)初步認識了幾何圖形,有立體圖形和平面圖形。
(2)立體圖形的分類
小編為大家提供的七年級上冊數(shù)學幾何圖形教學計劃表大家仔細閱讀了嗎?最后祝同學們學習進步。
七年級有理數(shù)的加減法教案篇十一
(一)教材所處的地位
人教版《數(shù)學》七年級上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運算的基礎,也是學習方程、不等式和函數(shù)的基礎。
(二)單元教學目標
(1)理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。
(2)理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。
(3)理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎上;理解合并同類項、去括號的依據是分配律;理解數(shù)的運算律和運算律性質在整式的加減運算中仍然成立。
(4)能分析實際問題中的數(shù)量關系,并列出整式表示 .體會用字母表示數(shù)后,從算術到代數(shù)的進步。
(5)滲透數(shù)學知識來源于生活,又要為生活而服務的辯證觀點;通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學生由特殊到一般的思維;體會整式的加減實質上就是去括號,合并同類項,結果總是比原來簡潔,體現(xiàn)了數(shù)學的簡潔美。
(三)單元教學的重難點
(1)重點:理解單項式、多項式的相關概念;熟練進行合并同類項和去括號的運算。
(2)難點:準確地進行合并同類項,準確地處理去括號時的符號。
(四)單元教學思路及策略
(1)注意與小學相關內容的銜接。
(2)加強與實際的聯(lián)系。
(3)類比“數(shù)”學習“式”,加強知識的內在聯(lián)系,重視數(shù)學思想方法的滲透。
(4)抓住重難點、加強練習。
(五)學生學習易錯點分析:
(1)忽視單項式的定義,誤認為式子 是單項式。
(2)忽視單項式系數(shù)的定義,誤認為 的系數(shù)是4.
(3)忽視單項式的次數(shù)的定義,誤認為3a的次數(shù)是0.
(4)忽視多項式的定義,誤認為 是單項式。
(5)忽視多項式的定義,誤認為 的次數(shù)是7.
(6)忽視多項式的項的定義,誤認為多項式 的項分別為 .
(7)把多項式的各項重新排列時,忽視要帶它前面的符號。
(8)忽視同類項的定義,誤認為2x3y4與-y4x3不是同類項。
(9)合并同類項時,誤把字母的指數(shù)也相加。
(10) 去括號時符號的處理。
(11)兩整式相減時,忽略加括號。
(六)教學建議:
(1)了解整式并學好合并同類項的關鍵是什么?
整式的加減法,實際上就是合并同類項,同類項的概念以及合并同類項的方法,是本章的重點,而同類項及其合并是以單項式為基礎的,所以,單項式的概念或意義是完成合并的關鍵。
(2)單項式與多項式有什么聯(lián)系與區(qū)別?
教材中先講單項式、后講多項式,然后概括為單項式、多項式統(tǒng)稱為整式,對于單項式的系數(shù),僅限于數(shù)字系數(shù)(單項式中的數(shù)字因數(shù)),這點務求仔細體會,切不可加以引申,而多項式沒有系數(shù);對于次數(shù),單項式的次數(shù)指,所有字母的指數(shù)之和,而多項式的次數(shù)是多項式中次數(shù)最高的項(單項式)的次數(shù),需要加以注意的問題是:單項式的系數(shù),包括它前面的符號,不要把常數(shù) 作為字母,單項式x的系數(shù)是1,且單獨一個數(shù)(零次單項式)或一個字母,也是單項式,對于0也是一個單項式;多項式的每一項都應包含它前面得符號;單項式和多項式得分母中不能含有字母。
(3)學習合并同類項的方法;
先把同類項分別作上記號,然后根據合并同類項的法則進行合并,合并后把多項式按某一字母降冪或升冪排列;當多項式中同類項的系數(shù)互為相反數(shù)時,合并后為0;
(4)什么是合并同類項中要加以注意的“兩同”?
合并同類項是整式加減的基礎,深入理解同類項的概念,又是掌握合并同類項的關鍵,教材中通過一個探究問題(三個填空題)的引入,進行比較、歸納,從而得出判斷同類項的 “兩同”標準:所含字母相同,并且相同字母的指數(shù)也相同,這樣的項叫做同類項。幾個常數(shù)項也是同類項,同類項至少有兩個,單項式不叫同類項。
(5)其它注意事項:
①整式中,只含一項的是單項式,否則是多項式。分母中含有字母的代數(shù)式不是整式,當然也不是單項式或多項式。
②單項式的次數(shù)是所有字母的指數(shù)之和;多項式的次數(shù)是多項式中最高次項的次數(shù)。
③單項式的系數(shù)包括它前面的符號,多項式中每一項的系數(shù)也包括它前面的符號。
④去括號時,要特別注意括號前面是“-”號的情形。
(七)課時安排:
第1課時 單項式
第2課時 多項式
第3課時 整式的加減(1)------合并同類項
第4課時 整式的加減(2)------去括號
第5課時 整式的加減(3)------一般步驟
第6課時 整式的加減(4)------化簡求值
第7課時 數(shù)學活動
第8課時 復習課
七年級有理數(shù)的加減法教案篇十二
【第一部分】知識點分布
1、 一元一次方程的解(重點)
2、 一元一次方程的應用(難點)
3、 求解一元一次方程及其在實際問題中的應用(考點)
【第二部分】關于一元一次方程
一、一元一次方程
(1)含有未知數(shù)的等式是方程。
(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。
(3)分析實際問題中的數(shù)量關系,利用其中的等量關系列出方程,是用數(shù)學解決實際問題的一種方法。
(4)列方程解決實際問題的步驟:①設未知數(shù);②找等量關系列方程。
(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。
(6)求方程的解的過程,叫做解方程。
二、等式的性質
(1)用等號“=”表示相等關系的式子叫做等式。
(2)等式的性質1:等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性質2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結果仍相等。
【第一部分】知識點分布
1、 一元一次方程的解(重點)
2、 一元一次方程的應用(難點)
3、 求解一元一次方程及其在實際問題中的應用(考點)
【第二部分】關于一元一次方程
一、一元一次方程
(1)含有未知數(shù)的等式是方程。
(2)只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。
(3)分析實際問題中的數(shù)量關系,利用其中的等量關系列出方程,是用數(shù)學解決實際問題的一種方法。
(4)列方程解決實際問題的步驟:①設未知數(shù);②找等量關系列方程。
(5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。
(6)求方程的解的過程,叫做解方程。
二、等式的性質
(1)用等號“=”表示相等關系的式子叫做等式。
(2)等式的性質1:等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性質2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)運用等式的性質時要注意三點:
①等式兩邊都要參加運算,并且是作同一種運算;
②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;
③等式兩邊不能都除以0,即0不能作除數(shù)或分母。
三、一元一次方程的解
1、解一元一次方程——合并同類項與移項
(1)合并同類項的依據:乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近 ·=a(a 常數(shù))的形式。
(2)把等式一邊的某項變號后移到另一邊,叫做移項。
(3)移項依據:等式的性質1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù)) 的形式。
2、解一元一次方程——去括號與去分母
(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。
(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。
(3)工作總量=工作效率×工作時間。
(4)工作量=人均效率×人數(shù)×時間。
四、實際問題與一元一次方程
(1)售價指商品賣出去時的的實際售價。
(2)進價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進價指商品的買入價,也稱成本價。
(3)標價指的是商家所標出的每件物品的原價。它與售價不同,它指的是原價。
(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標價打了幾折。
(5)盈虧問題:利潤=售價-成本; 售價=進價+利潤;售價=進價+進價×利潤率;
(6)產油量=油菜籽畝產量×含油率×種植面積。
(7)應用:行程問題:路程=時間×速度;
工程問題:工作總量=工作效率×時間;
儲蓄利潤問題:利息=本金×利率×時間;
本息和=本金+利息。
(4)運用等式的性質時要注意三點:
①等式兩邊都要參加運算,并且是作同一種運算;
②等式兩邊加或減,乘或除以的數(shù)一定是同一個數(shù)或同一個式子;
③等式兩邊不能都除以0,即0不能作除數(shù)或分母。
三、一元一次方程的解
1、解一元一次方程——合并同類項與移項
(1)合并同類項的依據:乘法分配律。合并同類項的作用:是一種恒等變形,起到“化簡”的作用,它使方程變得簡單,更接近 ·=a(a 常數(shù))的形式。
(2)把等式一邊的某項變號后移到另一邊,叫做移項。
(3)移項依據:等式的性質1.移項的作用:通過移項,使含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù)) 的形式。
2、解一元一次方程——去括號與去分母
(1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。
(2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。
(3)工作總量=工作效率×工作時間。
(4)工作量=人均效率×人數(shù)×時間。
四、實際問題與一元一次方程
(1)售價指商品賣出去時的的實際售價。
(2)進價指的是商家從批發(fā)部或廠家批發(fā)來的價格。進價指商品的買入價,也稱成本價。
(3)標價指的是商家所標出的每件物品的原價。它與售價不同,它指的是原價。
(4)打折指的是原價乘以十分之幾或百分之幾,則稱將標價打了幾折。
(5)盈虧問題:利潤=售價-成本; 售價=進價+利潤;售價=進價+進價×利潤率;
(6)產油量=油菜籽畝產量×含油率×種植面積。
(7)應用:行程問題:路程=時間×速度;
工程問題:工作總量=工作效率×時間;
儲蓄利潤問題:利息=本金×利率×時間;
本息和=本金+利息。
七年級有理數(shù)的加減法教案篇十三
【學習目標】
1、理解什么是一元一次方程。
2、理 解什么是方程的解及解方程,學會檢驗一個數(shù)值是不是方程的 解的方法。
【重點難點】能驗證一個數(shù)是否是一個方程 的解。
【導學指導】
一、溫故知新
1:前面學 過有關方程的一些 知識,同學們能說出什么是方程嗎?
答: 叫做方程。
2: 判斷下列是不是 方程,是打“√”,不是打“×”:
① ;( ) ②3+4=7;( )
③ ;( )④ ;( )
⑤ ;( ) ⑥ ;( )
二、自主探究
1. 一元一次方程的概念
觀察下面方程的特點
(1)4 =24;(2)1700+150=2450
(3)0.52`-(1-0.52`)=80
小結:象上面方程,它們都含有 個未知數(shù)(元),未知數(shù)的次數(shù)都是 ,這樣的方程叫做一元一次方程。
(即方程的一邊或兩邊含有未知數(shù))
2.方程的解
如何求出使方程左右兩邊相等的未知數(shù)的值?
如方程 =4中, =?
方程 中的 呢?
請用小學所學過的逆運算嘗試解決上面的問題。
解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。
例 檢驗2和-3是否為方程 的解。
解:當`=2時,
左邊= = ,
右邊= = ,
∵左邊 右邊(填=或≠)
∴`=2 方程的解(填是或不是)
當`= 時,
左邊= = ,
右邊= = ,
∵左邊 右邊(填=或≠)
∴`=3 方程的解(填是或不是)
【課堂練習】
1.判斷下列是不是一元一次方程,是打“√”,不是打“×”:
① =4;( ) ② ;( )
③ ; ( ) ④ ; ( )
⑤ ; ( ) ⑥3+4 =7 ;( )
2.檢驗3和-1是否為方程 的解。
3.`=1是下列方程( )的解:
(a) , ( b) ,
(c) ), ( d)
4 、已知方程 是關于`的一元一次方程,則a= 。
【要點歸納】:
1. 這節(jié)課我們學習了什么內容?
2.什么是方程的解?如何檢驗一個數(shù)是否是方程的解?
【拓展訓練】:
1.檢驗2和 是否為方程 的解。
2.老師要求把一篇有20__字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個字,問:小華要多少分鐘才能完成?(請設未知數(shù)列出方程,并嘗試求出 方程的解)
七年級有理數(shù)的加減法教案篇十四
1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義;
2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、認識列方程解決問題的思想以及用字母表示未知數(shù),用方程表示相等關系的符號化的方法
2、結合從實際問題中得出的方程,學會用“去分母”解一元一次方程,進一步體會化歸的思想。體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決,激發(fā)學習數(shù)學的熱情。建立一元一次方程的概念。 問題與情境 師生活動 設計意圖
一、創(chuàng)設情境,展示問題:
問題1:世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術解法,讓學生充分發(fā)表意見。算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`-1 學生獨立思考,小組交流,代表發(fā)言,解釋說明。問題1的算術解法:(50+70)÷2=60(千米/時) 605-70=230(千米) 問題1用算術法較容易解決,但問題2卻不容易解決,這樣產生矛盾沖突,使學生認識到進一步學習的必要性。 示意圖有助于分析問題。
二、尋找關系,列出方程
1、對于問題1,如果設王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊-青山 王家莊-秀水 根據汽車勻速前進,可知各路段汽車速度相等,列方程。
2、比一比:列算式與列方程有什么不同?哪一個更簡便?
3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據的是哪個相等關系?你認為列方程的關鍵是什么? 結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。學生思考回答:
1、王家莊-青山(`—50)千米,王家莊-秀水(`+70)千米。
2、汽車以每小時(`-50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學生體會:用算術方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。
三、定義方程,建立模型
1、定義:(板書)含有未知數(shù)的等式叫做方程。
練習一:判斷下列式子是不是方程,是的打“√”,不是的打“` ”.
(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )
練習二:根據下列問題,設未知數(shù)并列出方程。
(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為` cm。那么依題意得到方程:_________. (2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________. (3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數(shù)為 ,男生數(shù)為 . 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。
練習三:判斷下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)
3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。
4、歸納分析實際問題中的數(shù)量關系,利用其中的相等關系 列出方程,是用數(shù)學解決實際問題的一種方法。 (學生舉例并完成練習一) 師生合作,根據數(shù)量關系列出方程。
教師結合練習給出方程、一元一次方程的定義。 (我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解. 教師引導學生對上面的分析過程進行思考,將實際問題轉化為數(shù)學問題的一般過程。
學生舉出方程的例子。 (學生獨立思考、互相討論,先分析出等量關系,再根據所設未知數(shù)列出方程) 判斷哪些是一元一次方程。 學生單獨計算,并填表。 學生得出解決實際問題的模型。
四、訓練鞏固,課堂小結
1、根據下列問題,設未數(shù)列方程,并指出是不是一元一次方程。(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?(2)甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。
2、小結 本節(jié)課你學到了哪些知識?哪些方法?
五、布置作業(yè)a、 必做 82頁,第1、2、3、題; b、 拓展阿凡提經過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种唬诙€城市向他征收的稅是他剩余錢財?shù)囊话胗秩种?,到第三個城市里,又向他征收他經過兩次交稅后所剩余錢財?shù)囊话胗秩种?,當他回到家的時候,他剩下了11個金幣,問阿凡提原來有多少個金幣? c、課堂評價
1、 本節(jié)課的主要知識點是:
2、 你對列方程這節(jié)課的感受是:
3、 這節(jié)課我的困惑是: 解:(1) 設跑`周. 列方程400`=3000
4、 (2)設甲種鉛筆買了`枝,乙種鉛筆買了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)設上底為` cm,下底為(`+2)cm.列方程 學生自己探索,獨立完成,集體訂正。 學生課后完成,并寫學習心得。
七年級有理數(shù)的加減法教案篇十五
教材分析:
《解一元一次方程(一)合并同類項與移項》是義務教育教科書七年級數(shù)學上冊第三章第二節(jié)的內容。在此之前,學生已學會了有理數(shù)運算,掌握了單項式、多項式的有關概念及同類項、合并同類項,和等式性質,進一步將所學知識運用到解方程中。這為過渡到本節(jié)的學習起著鋪墊作用。合并同類項與移項是解方程的基礎,解方程它的移項根據是等式性質1、系數(shù)化為1它的根據是等式性質2,解方程是今后進一步學習不可缺少的知識。因而,解方程是初中數(shù)學中必須要掌握的重點內容。
設計思路:
《數(shù)學課程標準》中明確指出:學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者?;谝陨侠砟?,結合本節(jié)課內容及學生情況,教學設計中采用了探究發(fā)現(xiàn)法和多媒體輔助教學法,在學生已有的知識儲備基礎上,利用課件,鼓勵和引導學生采用自主探索與合作交流相結合的方式進行學習,讓學生始終處于積極探索的過程中,通過學生動手練習,動腦思考,完成教學任務。其基本程序設計為:
復習回顧、設問題導入 探索規(guī)律、形成解法 例題講解、熟練運算
鞏固練習、內化升華 回顧反思、進行小結 達標測試、反饋情況
作業(yè)布置、反饋情況。
教學目標:
1、知識與技能:(1)通過分析實際問題中的數(shù)量關系,建立方程解決實際問題,進一步認識方程模型的重要性;(2)、掌握移項方法,學會解“a·+b=c·+d”的一元一次方程,理解解方程的目標,體會解法中蘊涵的化歸思想。
2、過程與方法:通過解形如“a·+b=c·+d”形式的方程,體驗數(shù)學的建模思想。
3、情感、態(tài)度與價值觀:通過合作探究,培養(yǎng)學生積極思考、勇于探索的精神。
教學重點:建立方程解決實際問題,會解“a·+b=c·+d”類型的一元一次方程。
教學難點:分析實際問題中的相等關系,列出方程。
教學方法:先學后教,當堂訓練。
教學準備:多媒體課件等。
預習要求:要求學生自學教材第88——89頁的課文內容。然后根據自己的理解分析問題2及例2;并試著進行嘗試練習。找出自學中存在的問題,以便課堂學習中解決。
教學過程:
一、準備階段:
1、知識回顧:
(1)、用合并同類項的方法解一元一次方程的步驟是什么?
(2)、解下列方程:
① -3·-2·=10 ②
2、創(chuàng)設問題情境,導入新課。
問題:
把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少人?
如何解決這個問題呢?
二、導學階段:
(一)、出示本節(jié)課的學習目標:
1、通過分析實際問題中的數(shù)量關系,建立用方程解決問題的建模思想和方法;
2、掌握移項方法,學會解“a·+b=c·+d”類型的一元一次方程,理解解方程的目標,體會解法中蘊涵的化歸思想。
(二)、合作交流,探究新知
1、分析解決課前提出的問題。
問題:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少人?
分析: 設這個班有·名學生.
每人分3本,共分出___本,加上剩余的20本,這批書共____________本.
每人分4本,需要______本,減去缺的25本,這批書共____________本.
這批書的總數(shù)有幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?
這批書的總數(shù)是一個定值,表示它的兩個式子應相等,
即表示同一個量的兩個不同的式子相等.
根據這一相等關系列得方程:
方程的兩邊都有含·的項(3·和4·)和不含字母的常數(shù)項(20與-25),怎樣才能使它向 ·=a(常數(shù))的形式轉化呢?
方法過程:
2、總結移項的概念。
像上面這樣把等式一邊的某項變號后移到另一邊,叫做 “移項” .
3、思考:上面解方程中“移項”起到了什么作用?
4、例題學習
運用移項的方法解下列方程:
三、課堂練習:
運用移項的方法解下列方程:
四、課堂小結:
本節(jié)課,我們學習了哪些知識?你還有哪些困惑?
五、達標測試:
運用移項的方法解下列方程:(25′×4=100′)
六、預習作業(yè):
1、預習作業(yè):自學課本第90頁的課文內容及例4,完成第90頁練習2題;
2、課后作業(yè):(1)
七年級有理數(shù)的加減法教案篇十六
第1課時認識立體圖形與平面圖形
教學目標
1.可以從簡單實物的外形中抽象出幾何圖形,并了解立體圖形與平面圖形的區(qū)別;
2.會判斷一個幾何圖形是立體圖形還是平面圖形,能準確識別棱柱與棱錐.
教學過程
一、情境導入
觀察實物及欣賞圖片:
我們生活在一個圖形的世界中,圖形世界是多姿多彩的.其中蘊含著大量的幾何圖形.本節(jié)我們就來研究圖形問題.
二、合作探究
探究點一:立體圖形
【類型一】 從實物圖中抽象立體圖形的認識
例1 觀察下列實物模型,其形狀是圓柱體的是()
解析:圓柱的上下底面都是圓,所以正確的是d.
方法總結:結合實物,認識常見的立體圖形,如:長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等.
【類型二】 立體圖形的名稱與分類
例2 如圖所示為8個立體圖形.
其中,是柱體的序號為________,是錐體的序號為________,是球的序號為________.
解析:分別根據柱體,錐體,球體的定義可得結論,柱體為①②⑤⑦⑧,錐體為④⑥,球為③,故填①②⑤⑦⑧;④⑥;③.
方法總結:正確理解立體圖形的定義是解題的關鍵.
探究點二:平面圖形的認識
【類型一】 平面圖形的識別
例3 有下列圖形,①三角形,②長方形,③平行四邊形,④立方體,⑤圓錐,⑥圓柱,⑦圓,⑧球體,其中平面圖形的個數(shù)為()
a.5個 b.4個
c.3個 d.2個
解析:根據平面圖形的定義:一個圖形的各部分都在同一個平面內可判斷①②③⑦是平面圖形.故選b.
方法總結:區(qū)分平面圖形要記住平面圖形的特征,即一個圖形的各部分都在同一個平面內.
【類型二】 由平面圖形組成的圖形
例4 如圖所示,各標志的圖形主要由哪些簡單的平面圖形組成?
解:(1)由5個圖形組成;
(2)由2個正方形和1個長方形組成;
(3)由3個四邊形組成.
方法總結:解決這類問題的關鍵是正確區(qū)分圖形的形狀和名稱.
三、板書設計
1.立體圖形
特征:幾何圖形的各部分不都在同一平面內.
2.平面圖形
特征:幾何圖形的各部分都在同一平面內.
教學反思
本節(jié)利用課件展示圖片,聯(lián)系生活實際,激發(fā)學習興趣,調動學生的積極性.使學生以最佳狀態(tài)投入到學習中去.通過動手操作培養(yǎng)學生動手操作能力,同時也加深了學生對立體圖形和平面圖形的認識.使學生在討論交流的基礎上總結出立體圖形和平面圖形的特征.
第2課時從不同的方向看立體圖形和立體圖形的展開圖
教學目標
1.經歷從不同方向觀察物體的活動過程,初步體會從不同方向觀察同一物體可能看到不一樣的結果;
2.能畫出從不同方向看一些簡單幾何體以及由它們組成的簡單組合體得到的平面圖形,了解直棱柱、圓柱、圓錐的展開圖或根據展開圖判斷立體圖形.(重點,難點)
教學過程
一、情境導入
《題西林壁》
蘇東坡
橫看成嶺側成峰,遠近高低各不同.
不識廬山真面目,只緣身在此山中.
詩中描繪出詩人面對廬山看到的兩幅不同的畫面,你能用簡潔的圖形把它們形象的勾勒出來嗎?
二、合作探究
探究點一:從不同的方向觀察立體圖形
【類型一】 判斷從不同的方向看到的圖形
例1 沿圓柱體上底面直徑截去一部分后的物體如圖所示,它從上面看到的圖形是()
解析:從上面看依然可得到兩個半圓的組合圖形.故選d.
方法總結:本題考查了從不同的方向觀察物體.在解題時要注意,看不見的線畫成虛線,看得見的線畫成實線.
【類型二】 畫從不同的方向看到的圖形
例2 如圖所示,由五個小立方體構成的立體圖形,請你分別畫出從它的正面、左面、上面三個方向看所得到的平面圖形.
解析:從正面看所得到的圖形,從左往右有三列,分別有1,1,2個小正方形;從左面看所得到的圖形,從左往右有兩列,分別有2,1個小正方形;從上面看所得到的圖形,從左往右有三列,分別有2,1,1個小正方形.
解:如圖所示:
方法總結:畫出從不同的方向看物體的形狀的方法:首先觀察物體,畫出視圖的外輪廓線,然后將視圖補充完整,其中看得見部分的輪廓線通常畫成實線,看不見部分的輪廓線通常畫成虛線.在畫三種視圖時,從正面、上面看到的圖形要長對正,從正面、左面看到的圖形要高平齊,從上面、左面看到的圖形要寬相等.
七年級有理數(shù)的加減法教案篇十七
一、學情介紹
我本學期擔任初一七、八班的數(shù)學教學工作。初一(八)班共有學生55人,初一(七)班有學生56人。根據小學升初中考試的情況來分析學生的數(shù)學成績不算理想,總體的水平一般,往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,因此要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。初一學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,初一學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應初一教學的新要求,要重視對學生進行記法指導。本學期的工作重點是扭轉學生的學習態(tài)度,培養(yǎng)學生的好的學習習慣、創(chuàng)新意識,激發(fā)學生學習數(shù)學的熱情和興趣,培優(yōu)補差,同時強調對數(shù)學知識的靈活運用,反對死記硬背,以推動數(shù)學教學中學生素質的培養(yǎng)。
二、教學措施
1、根據今年學校及教科室計劃,認真構建“雙思三環(huán)六步”課堂教學模式,努力提高課堂教學的有效性和實效性。雙思”是指教師反思教學、學生反思學習;“三環(huán)”就是定向、內化、發(fā)展;“六步”分別是指:提供資源(入境生趣)、了解學情(自學生疑)、弄清疑難(學習釋疑)、點難撥疑(練習解難)、反思教學(反思學習)、引導實踐(遷移創(chuàng)新)。我們要在反思中成長,學生要在反思中進步;我們要反思的主要內容是怎樣優(yōu)化“三環(huán)六步”教學設計,不斷提高課堂教學效率;學生要反思的主要內容學習積極性、學習策略和學習方法運用是否得當、不斷提高學習效率。
初一學生剛剛進入初中階段,正是從小學過度到初中學習的重要階段,也是進行“雙思三環(huán)六步”課堂教學模式的時期,要逐步的培養(yǎng)和完善這種模式,要求我們多研究、多思考、多創(chuàng)新、多探究。按照“低(起點)慢(速度)多(落點)高(標準)”元素結構教學法進行教學,“低起點”考慮到學生的基礎,初一學生從小學數(shù)學到初中數(shù)學的學習是一個飛躍,怎樣幫助學生慢慢過渡是一個難點,從細小的問題、每一個小知識點出發(fā)結合小學知識融匯到初中的知識中去,從而使學生很快接受知識。“慢速度”反對快速度教學,主張教學要考慮學生的學習規(guī)律和接受程度,兼顧初一學生的生理、心理、知識、能力、意志、品德等特征和差異,步步為營,梯次推進,使學生有效地掌握知識和培養(yǎng)能力?!岸嗦潼c”強調教育要考慮到初一學生個性差異的特點。個性差異是表現(xiàn)在多方面,不僅有年齡、性別、性格、身體的差異,還有很多學習上的差異,個人思維方式、生活方式的差異。推動不同層次的學生都有收獲?!案邩藴省睘閷W生確立的學習標準。而且把目標細化,使學生能很快達到,既能掌握知識又能體會到成功的愉悅,使初一的學生對數(shù)學充滿興趣,從而達到高效課堂的標準。
2、精心設計習題,使習題從簡單到復雜形成梯度,引導學生學會發(fā)散思維,培養(yǎng)學生創(chuàng)造性思維的能力,實現(xiàn)一題多解、舉一反三、觸類旁通,培養(yǎng)思維的靈活性。
3、批改作業(yè)做到全批全改,從過程到步驟嚴格要求,發(fā)現(xiàn)問題及時解決作認好總結,從初一使學生慢慢養(yǎng)成認真按步驟做作業(yè)的習慣。
4、繼續(xù)實行課前一題的模式。課前五分鐘每個班的課代表把上一節(jié)課涉及到的典型題目呈現(xiàn)在黑板上,學生在解題的過程中復習上一節(jié)的內容,而且也能做到盡快把學生從課間拉回到上課的的狀態(tài),并力求把學生中新方法新思維挖掘出來。
5、實行一對一的幫扶活動,由好學生帶動一個差一點的學生,從知識、作業(yè)、學習習慣等各方面互幫互助,從而全面提高學生的綜合素質。
三、合理落實各項教學常規(guī)
1、備好課是上好課的基礎,是提高課堂教學質量的關鍵。根據“雙思三環(huán)六步”課堂教學模式,所以在備課時深入鉆研教材,正確地掌握和處理好教材的重點、難點,準備大量的、難度不同的習題備用,備課以個人獨立鉆研備課為主,在此基礎上進行集體備課,廣泛吸取其他老師的優(yōu)點和精華,完善自己的備課達到精益求精。
2、上課時要嚴格按照“雙思三環(huán)六步”課堂教學模式的步驟進行教學,講課時要圍繞中心內容,突出重點,突破難點。整個教學過程要嚴密組織,使課堂教學既層次分明,又協(xié)調緊湊。教學時要面向全體學生,使各類學生都學有所得。特別是要照顧到差生,力求使他們能掌握本課時的基本知識和技能。