日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 初中數學教案案例設計(精選5篇)

初中數學教案案例設計(精選5篇)

格式:DOC 上傳日期:2023-04-03 16:34:02
初中數學教案案例設計(精選5篇)
時間:2023-04-03 16:34:02     小編:zdfb

作為一位兢兢業業的人民教師,常常要寫一份優秀的教案,教案是保證教學取得成功、提高教學質量的基本條件。那么我們該如何寫一篇較為完美的教案呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。

初中數學教案案例設計篇一

(1)組成不等式組的不等式必須是一元一次不等式;

(2)從數量上看,不等式的個數必須是兩個或兩個以上;

(3)每個不等式在不等式組中的位置并不固定,它們是并列的.

二.一元一次不等式組的解集及解不等式組:在一元一次不等式組中,各個不等式的解集的公共部分就叫做這個一元一次不等式組的解集。求這個不等式組解集的過程就叫解不等式組。解一元一次不等式組的步驟:

(1)先分別求出不等式組中各個不等式的解集;

(2)利用數軸或口訣求出這些解集的公共部分,也就是得到了不等式組的解集.

三.不等式(組)的解集的數軸表示:

一元一次不等式組知識點

1.用數軸表示不等式的解集,應記住下面的規律:大于向右畫,小于向左畫,有等號的畫實心原點,無等號的畫空心圓圈;

2.不等式組的解集,可以在數軸上先畫同各個不等式的解集,找出公共部分即為不等式的解集。公共部分也就各不等式解集在數軸上的重合部分;

3..我們根據一元一次不等式組,化簡成最簡不等式組后進行分類,通常就能把一元一次不等式組分成如上四類。

說明:當不等式組中,含有“≤”或“≥”時,在解題時,我們可以不關注這個等號,這樣就這類不等式組化歸為上述四種基本不等式組中的某一種類型。但是,在解題的過程中,這個等號要與不等號相連,不能分開。

四.求一些特解:求不等式(組)的正整數解,整數解等特解(這些特解往往是有限個),解這類問題的步驟:先求出這個不等式的解集,然后借助于數軸,找出所需特解。

【一元一次不等式組考點分析】

(1)考查不等式組的概念;

(2)考查一元一次不等式組的解集,以及在數軸上的表示;

(3)考查不等式組的特解問題;

(4)確定字母的取值。

【一元一次不等式組知識點誤區】

(1)思維誤區,不等式與等式混淆;

(2)不能正確地確定出不等式組解集的公共部分;

(3)在數軸上表示不等式組解集時,混淆界點的表示方法;

(4)考慮不周,漏掉隱含條件;

(5)當有多個限制條件時,對不等式關系的發掘不全面,導致未知數范圍擴大;

(6)對含字母的不等式,沒有對字母取值進行分類討論。

初中數學教案案例設計篇二

一、教學目標:

1、知道一次函數與正比例函數的定義。

2、理解掌握一次函數的圖象的特征和相關的性質。

3、弄清一次函數與正比例函數的區別與聯系。

4、掌握直線的平移法則簡單應用。

5、能應用本章的基礎知識熟練地解決數學問題。

二、教學重、難點:

重點:初步構建比較系統的函數知識體系。

難點:對直線的平移法則的理解,體會數形結合思想。

三、教學過程:

1、一次函數與正比例函數的定義:

一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。

正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。

2、一次函數與正比例函數的區別與聯系:

(1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。

(2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

平行的一條直線。

基礎訓練:

1、寫出一個圖象經過點(1,—3)的函數解析式為:

2、直線y=—2x—2不經過第象限,y隨x的增大而。

3、如果p(2,k)在直線y=2x+2上,那么點p到x軸的距離是:

4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:

5、過點(0,2)且與直線y=3x平行的直線是:

6、若正比例函數y=(1—2m)x的圖像過點a(x1,y1)和點b(x2,y2)當x1y2,則m的取值范圍是:

7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。

8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。

9、已知圓o的半徑為1,過點a(2,0)的直線切圓o于點b,交y軸于點c。

(1)求線段ab的長。

(2)求直線ac的解析式。

初中數學教案案例設計篇三

1.掌握一元二次方程的根與系數的關系并會初步應用.

2.培養學生分析、觀察、歸納的能力和推理論證的能力.

3.滲透由特殊到一般,再由一般到特殊的認識事物的規律.

4.培養學生去發現規律的積極性及勇于探索的精神.

重點

根與系數的關系及其推導

難點

正確理解根與系數的關系.一元二次方程根與系數的關系是指一元二次方程兩根的和、兩根的積與系數的關系.

一、復習引入

1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.

2.由上題可知一元二次方程的系數與根有著密切的關系.其實我們已學過的求根公式也反映了根與系數的關系,這種關系比較復雜,是否有更簡潔的關系?

3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?

二、探索新知

解下列方程,并填寫表格:

方程 x1 x2 x1+x2 x1?x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

觀察上面的表格,你能得到什么結論?

(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q之間有什么關系?

(2)關于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數a,b,c之間又有何關系呢?你能證明你的猜想嗎?

解下列方程,并填寫表格:

方程 x1 x2 x1+x2 x1?x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小結:根與系數關系:

(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q的關系是:x1+x2=-p,x1?x2=q(注意:根與系數關系的前提條件是根的判別式必須大于或等于零.)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數化為1,再利用上面的結論.

即:對于方程ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1?x2=ca

(可以利用求根公式給出證明)

例1不解方程,寫出下列方程的兩根和與兩根積:

(1)x2-3x-1=0(2)2x2+3x-5=0

(3)13x2-2x=0 (4)2x2+6x=3

(5)x2-1=0 (6)x2-2x+1=0

例2不解方程,檢驗下列方程的解是否正確?

(1)x2-22x+1=0 (x1=2+1,x2=2-1)

(2)2x2-3x-8=0 (x1=7+734,x2=5-734)

例3已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)

例4已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.

變式一:已知方程x2-2kx-9=0的兩根互為相反數,求k;

變式二:已知方程2x2-5x+k=0的兩根互為倒數,求k.

三、課堂小結

1.根與系數的關系.

2.根與系數關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.

四、作業布置

1.不解方程,寫出下列方程的兩根和與兩根積.

(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0

(4)3x2+x+1=0

2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.

3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值

初中數學教案案例設計篇四

教學目標:

1、了解公式的意義,使學生能用公式解決簡單的實際問題;

2、初步培養學生觀察、分析及概括的能力;

3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議:

一、教學重點、難點

重點:通過具體例子了解公式、應用公式。

難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例:

一、教學目標

(一)知識教學點

1、使學生能利用公式解決簡單的實際問題。

2、使學生理解公式與代數式的關系。

(二)能力訓練點

1、利用數學公式解決實際問題的能力。

2、利用已知的公式推導新公式的能力。

(三)德育滲透點

數學來源于生產實踐,又反過來服務于生產實踐。

(四)美育滲透點

數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。

二、學法引導

1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。

2、學生學法:觀察→分析→推導→計算。

三、重點、難點、疑點及解決辦法

1、重點:利用舊公式推導出新的圖形的計算公式。

2、難點:同重點。

3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差。

四、課時安排

1課時

五、教具學具準備

投影儀,自制膠片。

六、師生互動活動設計

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式。

七、教學步驟

(一)創設情景,復習引入

師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。

在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。

板書:公式

師:小學里學過哪些面積公式?

板書:s=ah

(出示投影1)。解釋三角形,梯形面積公式

【教法說明】讓學生感知用割補法求圖形的面積。

初中數學教案案例設計篇五

一、教學目標:

1、理解二元一次方程及二元一次方程的解的概念;

2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;

3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;

4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

二、教學重點、難點:

重點:二元一次方程的意義及二元一次方程的解的概念。

難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

三、教學方法與教學手段:

通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。

四、教學過程:

1、情景導入:

新聞鏈接:x70歲以上老人可領取生活補助。

得到方程:80a+150b=902880、

2、新課教學:

引導學生觀察方程80a+150b=902880與一元一次方程有異同?

得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。

做一做:

(1)根據題意列出方程:

①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;

②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:

(2)課本p80練習2、判定哪些式子是二元一次方程方程。

合作學習:

活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。

問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的'一對未知數的值叫做二元一次方程的一個解。

并提出注意二元一次方程解的書寫方法。

3、合作學習:

給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?

出示例題:已知二元一次方程x+2y=8。

(1)用關于y的代數式表示x;

(2)用關于x的代數式表示y;

(3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。

(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)

4、課堂練習:

(1)已知:5xm—2yn=4是二元一次方程,則m+n=;

(2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;

5、你能解決嗎?

小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。

6、課堂小結:

(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

(2)二元一次方程解的不定性和相關性;

(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。

7、布置作業:

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服