日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 新學期的數學計劃 數學的新學期計劃(3篇)

新學期的數學計劃 數學的新學期計劃(3篇)

格式:DOC 上傳日期:2023-04-29 06:53:02
新學期的數學計劃 數學的新學期計劃(3篇)
時間:2023-04-29 06:53:02     小編:zxfb

時間就如同白駒過隙般的流逝,我們又將迎來新的喜悅、新的收獲,讓我們一起來學習寫計劃吧。優秀的計劃都具備一些什么特點呢?又該怎么寫呢?以下我給大家整理了一些優質的計劃書范文,希望對大家能夠有所幫助。

新學期的數學計劃 數學的新學期計劃篇一

復習高數書上冊第一章,需要達到以下目標:

1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系。

2.了解函數的有界性、單調性、周期性和奇偶性。

3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念。

4.掌握基本初等函數的性質及其圖形,了解初等函數的概念。

5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系。

6.掌握極限的性質及四則運算法則。

7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。

8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。

9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。

10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質。

本階段主要任務是掌握函數的有界性、單調性、周期性和奇偶性;基本初等函數的。性質及其圖形;數列極限與函數極限的定義及其性質;無窮小量的比較;兩個重要極限;函數連續的概念、函數間斷點的類型;閉區間上連續函數的性質。

復習高數書上冊第二章1-3節,需達到以下目標:

1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系。

2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分。

3.了解高階導數的概念,會求簡單函數的高階導數。

本階段主要任務是掌握導數的幾何意義;函數的可導性與連續性之間的關系;平面曲線的切線和法線;牢記 基本初等函數的導數公式;會用遞推法計算高階導數。

復習高數書上冊第二章 4-5節,第三章1-5節。需達到以下目標:

1.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數。

2.理解并會用羅爾(rolle)定理、拉格朗日(lagrange)中值定理和柯西(cauchy)中值定理。

3.掌握用洛必達法則求未定式極限的方法。

4.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用。

5.會用導數判斷函數圖形的凹凸性。(注:在區間[a,b]內,設函數具有二階導數。當 時,圖形是凹的;當 時,≤≥圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形。

本階段主要任務是掌握分段函數,反函數,隱函數,由參數方程確定函數的導數。會根據函數在一點的導數判斷函數的增減性。會應用微分中值定理證明。會根據洛比達法則的幾種情況應用法則求極限。掌握極值存在的必要條件,第一和第二充分條件。會計算函數的極值和最值以及函數的凸凹性。會計算函數的漸近線。會計算與導數有關的應用題[邊際問題、彈性問題、經濟問題和幾何問題的最值]。

復習高數書上冊第四章 第1-3節。需達到以下目標:

1.理解原函數的概念,理解不定積分的概念。

2.掌握不定積分的基本公式,掌握不定積分的性質,掌握不定積分換元積分法與分部積分法。會求簡單函數的不定積分。

本階段主要任務是掌握不定積分的性質,不定積分的公式[牢記一個函數的原函數有無窮多個,注意+c],會運用第一,第二換元法求函數的不定積分。掌握不定積分分部積分公式并應用。

復習高數書上冊第五章第1-3節。達到以下目標:

1.理解定積分的幾何意義。

2.掌握定積分的性質及定積分中值定理。

3.掌握定積分換元積分法與定積分廣義換元法。

本階段的主要任務是掌握不定積分的性質,會根據不定積分的性質做題。尤其注意積分上下限互換后積分值變為其相反數,定積分與變量無關,可根據函數奇偶性計算定積分等性質。

復習高數書上冊第五章第4節,第六章第2節。達到以下目標:

1.掌握積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式。

2.掌握定積分換元法與定積分廣義換元法。會求分段函數的定積分。

3.掌握用定積分計算一些幾何量 (如平面圖形的面積、旋轉體的體積)。了解廣義積分與無窮限積分。

本階段主要任務是掌握積分上限函數的性質,掌握牛頓-萊布尼茨公式,應用定積分換元法求定積分。會根據定積分的幾何意義計算平面圖形的面積、旋轉體的體積。

新學期的數學計劃 數學的新學期計劃篇二

本學期我擔任高一(3)、(4)兩班的數學教學工作,兩班學生共有138人。大部分學生初中的基礎較差,整體水平不高。從上課兩周來看,學生的學習積極性還比較高,愛問問題的學生比較多;但由于基礎知識不太牢固,沒有良好的學習習慣,自控能力較差,不能正確地定位自己;所以上課效率一般,教學工作有一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。

(1)獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。

(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。

(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。

(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(5)學會通過收集信息、處理數據、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。

(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。

(1)通過分析問題的方法的教學,培養學生的學習的興趣。

(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。

(3)在探究基本函數的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

(5)還時間和空間給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。

1、培養學生記憶能力。

(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。

(2)通過揭示立體集合、函數、數列有關概念、公式和圖形的對應關系,培養記憶能力。

2、培養學生的運算能力。

(1)通過概率的訓練,培養學生的運算能力。

(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。

(3)通過函數、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

(5)利用數形結合,另辟蹊徑,提高學生運算能力。

高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在于它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養

學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。

重點工作:

認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。

分層推進措施

1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。

2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

3.培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。

4.讓學生通過單元考試,檢測自己的實際應用能力,從而及時總結經驗,找出不足,做好充分的準備

5、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

6、加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育;同時重視數學應用意識及應用能力的培養。

7、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。

8、注意研究學生,做好初、高中學習方法的銜接工作。集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼于基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。

新學期的數學計劃 數學的新學期計劃篇三

期末考試到了,我們又進入了緊張的復習階段,為了使最后的復習踏實而有效,特制定了四輪復習法:

第一輪:系統梳理各章知識點,并將對應知識點的典型題目出成試卷,考練結合。在這部分以基礎知識、基本題型為主,重點讓學生回顧各章知識,形成知識網絡,加強知識之間的聯系。約用三天的時間。

第二輪:綜合練習,以考代練。依據歷年期末考試試卷及學生在分章節復習中出現的的問題進行綜合測試。難度偏低,以鞏固各章知識,形成綜合解題能力和增強學生自信心為主要目的。在訂正試卷中以學生自己改正,小組討論和教師點撥的形式為主,充分發揮學生學習的主動性,培養糾錯能力。

第三輪:查找典型錯誤,彌補知識漏洞。主要針對學生在第二輪檢測中出現的共性問題、典型性錯誤,再出綜合小卷進行訓練或進行簡單的變式練習。主要形式是穿插于第二輪復習中,判完每次測試卷,抽出典型問題,出成小卷子(適當變式,不增加難度),訂正完試卷后作為課上練習。每三張綜合測試卷后再出一張典型錯誤的大卷子,進行測試。本輪與第二輪用時六天。

第四輪:實戰演練。用歷年期末考試卷進行期末模擬考試,并配以適量提高難度的綜合性題目,使學生增加考試經驗,積累解題方法。本輪主要以提高為目的,甄別出能力型學生與基礎型學生,分別進行不同學習方法和應試方法的指導。

相信通過以上四輪復習,一定能幫學生夯實基礎提高能力,在期末考試中取得理想成績。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服