在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質的范文嗎?下面是小編幫大家整理的優(yōu)質范文,僅供參考,大家一起來看看吧。
公因數和最大公因數的教學反思篇一
“因數和倍數”的知識,向來是小學數學教學的難點。“最大公因數”這節(jié)課是在學生掌握了因數、倍數、找因數的基礎上進行的,通過這節(jié)課的學習,學生會說出兩個數的公因數和最大公因數,會求兩個數的最大公因數,并為后面學習分數的約分打好基礎。反思這節(jié)課我認為有以下幾點:
1、通過找8和12的因數,引出公因數的概念。
教師引導學生先寫出8和12的因數,再觀察發(fā)現8和12有公有的因數,自然引出了公因數的概念。然后通過集合圈的形式,直觀呈現什么是公因數,什么又是最大公因數。促進學生建立”公因數和最大公因數”的概念。
2、通過找18和27的最大公因數,掌握找最大公因數的方法。
掌握了公因數的概念之后,教師放手給予學生足夠的時間,讓學生自主探究找最大公因數的方法。交流反饋時,考慮到中下水平的學生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。
本節(jié)課,教師從認識公因數——理解最大公因數——探究找最大公因數的方法——相應的練習鞏固這幾個環(huán)節(jié)入手,每個環(huán)節(jié)都是層層遞進,環(huán)環(huán)相扣,促進了學生對概念的理解。
《數學課程標準》指出:“學生是學習的主人,教師是數學學習的組織者、引導者與合作者。”在本節(jié)課中,我努力將找最大公因數的概念教學課,設計成為學生探索問題,解決問題的過程,各個環(huán)節(jié)的學習流程,體現了教師是組織者——提供數學學習的材料;引導者——引導學生利用各種途徑找到公因數,最大公因數;合作者——與學生共同探討規(guī)律。在整個教學的過程中,學生真正成了課堂學習的主人,尋找最大公因數的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學生個性得到發(fā)揮。
公因數和最大公因數的教學反思篇二
學生的學習過程是一種特殊的認知過程,必須在積極主動的情況下在自己的逐步思考和探究中達到解決的目的。
1、小組討論合作學習研究多了,獨立思考就有所忽視。從數學學習的本質來說,獨立思考是主流,合作交流應在獨立思考的基礎上進行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設計時,求兩數的最大公約數。先讓學生課前獨立探究方法,在學生有充分獨立思考的基礎上再交流評價。才真正實現每個學生潛質的開發(fā)和學生之間真正的差異互補。
2、獨特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學中應放下架子,蹲下身子來傾聽學生,相信每個學生都會有精彩的表現。正如陶行知所說的:“學生能做許多你不能做的事,也能做許多你認為他不能做的事。”不要小看了孩子,要對每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,學生能在一些簡單的嘗試開始,從中逐步發(fā)現其中的規(guī)律,以至于應用獲得的規(guī)律來實現問題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。
3、當數學問題情境作用于思考者時就有可能展開數學思維活動,可以說,問題的設計和問題的情境的創(chuàng)設是促進數學思考的客觀性因素。讓學生在問題情境中層層推出數學思考“還有沒有其他的方法”“他的方法你認為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學,錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學習的學生都是一個發(fā)現、創(chuàng)造的大空間。
兩個數的最大公約數的教學反思有探究就有發(fā)現,有發(fā)現就是
學習的成功。成功所帶來的喜悅總是進一步學習的最大動力,自主探究的課堂,為個性不同的學生的發(fā)展留下了必要的空間,讓他們都有機會表達自己的思想,以自己獨特的方式去學習數學,發(fā)展知識,各自體驗到學習數學的成功感。
公因數和最大公因數的教學反思篇三
對于本節(jié)課,我覺得有以下需要解決和認識。
1.復習尋找因數的方法。
2.聯(lián)系實際體會學習尋找公因數的必要性。
3.探索尋找2個數的公因數和最大公因數的方法。
4.結合集合方法直觀顯示公因數和最大公因數。
5.理解學習公因數和最大公因數的意義以及應用。
6.結合短除法尋找最大公因數的方法。(這個在人教版中作為了解,在本課中,我向孩子們了解介紹,但未做要求)
在課上,我以為長16dm寬12dm的客廳鋪上正方形方磚,剛好鋪滿,能選用集中方磚,這在無形中蘊含這尋找16和12的因數,這樣能夠孩子們體會尋找公因數的必要性,引起探究欲望。
孩子們有不同的方法和方式去表示公因數的方式,在最后介紹集合方式,在交集中更直觀現實公因數,這樣更直觀的顯示,初步滲透集合思想。
學習短除法也為后面教學約分做好先知鋪墊,也為孩子們介紹一種尋找最大公因數的簡便方法,滿足不同水平學生學習的需要。
公因數和最大公因數的教學反思篇四
“公因數和最大公因數”是第三單元第三課時的內容,在此之前,已經學過了公倍數和最小公倍數,掌握了公倍數和最小公倍數的概念和求法,這節(jié)課的教學過程與公倍數的教學非常相似,吸取了公倍數教學時的教訓,本節(jié)課教學公因數概念的時候,我先讓學生讀題,說清題意,再進行操作,這樣以來學生是帶著問題去操作的,不像公倍數時部分學生題目都理解不了就開始動手操作,不能完全達到本題操作的目的。在教學求公因數方法的時候,我也讓學生與公倍數求法進行了比較,通過比較學生發(fā)現了公倍數是無限的,沒有給定范圍時要寫省略號,而公因數是有限個的,要寫好句號,表示書寫完成;還發(fā)現找公倍數時是找最小公倍數,而找公因數是最大公因數;還發(fā)現求公因數的方法中是先找小數的因數再從其中找大數的因數,而求公倍數卻是利用大數翻倍法,找出來的是大數的倍數,再從其中找出小數的倍數。不僅兩個例題的教學過程相似,連練習的設計也是相似的,所以學生在完成練習的時候,已經對練習的形式較為熟悉,練習完成的較好。正因為兩節(jié)課太相似,所以小部分學生已經有些混淆了,分不清怎么求公倍數,怎么求公因數,這個是在以后教學中要避免的。
這節(jié)課的作業(yè)也能反映一些本節(jié)課上的問題,在教學公倍數的時候,我沒有強調集合中元素的互異性,作業(yè)中不少學生在公倍數一欄填寫的數字,同時出現在左右部分的集合中,在這節(jié)課練習時,我特意強調了這一點,希望學生們能記住,在完成練習五的時候還發(fā)現,部分學生對于2、3、的倍數的特征記得不清楚了,所以在判斷是不是它們的倍數的時候還有一些人用大數去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學生回憶2、3、5的倍數的特征,想必他們會節(jié)省更多的時間。
《最大公因數》
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
公因數和最大公因數的教學反思篇五
北師大版數學五年級上冊《找最大公因數》
我校地處城郊,所帶班級學生共25人,學生的思維比較活躍,比較善于提出數學問題,能在小組合作學習中主動探究知識。本冊一單元,學生已經理解了因數和倍數的意義,能用乘法算式、集合等方式列舉出一個數的因數。因此用列舉法找最大公因數沒有困難。而利用因數關系、互質數關系找還有一定的難度。因為學生不易發(fā)現這兩個數具有這些關系。
教材直接呈現了找公因數的一般方法:先用想乘法算式的方式分別找出12和18 的因數,再找出公因數和最大公因數。在此基礎上,引出公因數與最大公因數的概念。教材用集合的方式呈現探索的過程。在練習1、2中引出了用因數關系、互質數關系找最大公因數,教師要引導學生發(fā)現這個方法并會運用。教師要注意讓學生經歷知識的形成過程,要重視引發(fā)學生的數學思考。
知識與技能:探索找兩個數的公因數的方法,會用列舉法找出兩個數的公因數和最大公因數。
過程與方法:經歷找兩個數的公因數的過程,理解公因數和最大公因數的意義。
情感、態(tài)度與價值:培養(yǎng)學生對學習數學的興趣。通過觀察、分析、歸納等數學活動,體驗數學問題的探索性和挑戰(zhàn)性,感受數學思考的條理性。
教學重點:探索找兩個數的公因數的方法,會用列舉法找出兩個數的公因數和最大公因數。
教學難點:經歷找兩個數的公因數的過程,理解公因數和最大公因數的意義。
一課時
師:出示3×4=12,( )是12的因數。
生:3和4是12的因數。
(1)師:除了3和4是12的因數,12的因數還有哪些?
生獨立完成后匯報,板書 12的因數有:1、2、3、4、6、12。
師:要找出一個數的全部因數,需要注意什么?
生:要一對一對有序地寫,這樣才不會遺漏。
師:照這樣的方法,請你寫出18的全部因數。
生獨立寫后匯報:18的因數有:1、2、3、6、9、18
(此時出示集合圖)
師:在這兩個圈里,應該填上什么數?請大家完成正在書45頁上。
生做后匯報師板書于圈中。
(2)師:請大家找一找在12和18的因數中,有沒有相同的因數,相同的因數有哪幾個。
生找出12和18相同的因數有:1、2、3、6
師:像這樣,既是12的因數,又是18的因數,我們就說這些數都是12和18的公因數。
師:這里最大的公因數是幾?
生:最大是6。
師:6就是12和18的最大公因數。這就是我們這節(jié)課學習的內容——找最大公因數。
板書課題:找最大公因數
(此時出示集合圖)
師:中間這一區(qū)域有什么特征?應該填什么數字?獨立思考后小組討論
(生分組討論)
匯報:中間區(qū)域是12的因數和18的因數的交叉區(qū)域,所填的數應該既是12的因數又是18的因數,也就是12和18的公因數填在這里。
師:請大家完成這個題。(生做后訂正)
剛才我們找最大公因數的方法叫做列舉法。(板書:列舉法)
請大家用這種方法找出下面每組數的最大公因數。 9和15
師:請大家翻到書第45頁,獨立完成第一題。
生匯報:
8的因數: 1、2、4、8
16的因數: 1、2、4、8、16
8和16的公因數: 1、2、4、8
8和16的最大公因數是 8
生獨立思考后分組討論。
生匯報:8是16的因數,所以8和16的最大公因數就是8。
師引導生歸納并板書:如果較小數是較大數的因數,那么較小數就是這兩個數的最大公因數。(板書:用因數關系找)
練習:找出下面每組數的最大公因數。 4和12 28和7 54和9
師:請大家獨立完成第二題。
生匯報:
5的因數: 1、5
7的因數: 1、7
5和7的最大公因數是 1
師引導學生觀察最后一句5和7之間是什么關系,與他們的最大公因數有什么關系?
生獨立思考后分組討論。
生匯報:5和7都是質數,所以5和7的最大公因數就是1。
師:像這樣只有公因數1的兩個數叫互質數。如果兩個數是互質數,那么它們的公因數只有1。(板書:用互質數關系找)
練習:找出下面每組數的最大公因數。 4和5 11和7 8和9
師:今天我們學習了用哪些方法找最大公因數?
生:列舉法,用因數關系找,用互質數關系找。
師:我們在做題時,要觀察給出的數字的.特征選用不同的方法。
書46頁3、4、5題。生獨立完成,師巡視指導。
這節(jié)課你有什么收獲?
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
完成練習冊上的習題
1、教師用書:北師大版五年級數學上冊
2、數字卡片
本節(jié)課是在學生掌握了因數、倍數、找因數的基礎上進行教學,通過解決故事中的問題,讓學生逐層深入地懂得找公因數的基本方法。在此基礎上,引出公因數和最大公因數的概念,在填寫公因數時,學生往往容易出現重復的現象。
在教學過程中,我鼓勵孩子歸納總結找最大公因數特征和方法。先看兩個數是不是倍數關系,如果是倍數關系,那么小的那個數就是最大公因數。如果兩個數是互質數或者是相鄰的兩個自然數,那么這兩個數的最大公因數就是1。
找最大公因數時,我向學生介紹了短除法,當數字比較大時,用短除法比較簡單。
公因數和最大公因數的教學反思篇六
《標準》指出“學生是數學學習的主人,教師是數學學習的組織者、引導者和合作者。”這一理念要求我們教師的角色必須轉變。我想教師的作用必須體現在以下幾個方面。一是要引導學生思考和尋找眼前的問題與自己已有的知識體驗之間的關聯(lián);二是要提供把學生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學生提供有啟發(fā)性的討論模式;四是要鼓勵學生表達,并且在加深理解的基礎上,對不同的答案開展討論;五是要引導學生分享彼此的思想和結果,并重新審視自己的想法。
對照《課標》的理念,我對《公因數與最大公因數》的教學作了一點嘗試。
《公因數與最大公因數》是在《公倍數和最小公倍數》之后學習的一個內容。如果我們對本課內容作一分析的話,會發(fā)現這兩部分內容無論是在教材的呈現程序還是在思考方法上都有其相似之處。基于這一認識,在課的開始我作了如下的設計:
“今天我們學習公因數與最大公因數。對于今天學習的內容你有什么猜測?”
學生已經學過公倍數與最小公倍數,這兩部分內容有其相似之處,課始放手讓學生自由猜測,學生通過對已有認知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數和最大公因數?如何找公因數與最大公因數?為什么是最大公因數面不是最小公因數?這一些問題在學生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設計貼近學生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎。
通過學生的猜測,我把學生的提出的問題進行了整理:
(1) 什么是公因數與最大公因數?
(2) 怎樣找公因數與最大公因數?
(3) 為什么是最大公因數而不是最小公因數?
(4) 這一部分知識到底有什么作用?
我先讓學生獨立思考?然后組織交流,最后讓學生自學課本
這樣的設計對學生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學生的主體性。在這一過程中學生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標準》中倡導給學生提供探索與交流的時間和空間的`應有之意吧。
公因數和最大公因數的教學反思篇七
公因數和最大公因數這一課應注重引導學生體驗“概念形成”的過程,讓學生“研究學習”、“自主探索”,學生不應是被動接受知識的容器,而應是在學習過程中主動積極的參與者,是認知過程的探索者,是學習活動的主體。
在教學過程中,我們不僅要求學生掌握抽象的數學結論,更應注重學生概念形成的過程。應引導學生參與探討知識的形成過程,盡可能挖掘學生潛能,能讓學生通過努力,自己解決問題,形成概念。通過創(chuàng)設生活情境,幫助王叔叔鋪地裝,將學生自然地帶入求知的情境中去,在學生已有知識經驗的基礎上放手讓學生去交流、探索。“哪一個正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養(yǎng)學生自主探索、提出問題和解決問題的能力。接著進一步引導學生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學生在反復地思考和交流中加深對公因數這一概念的理解。
教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調動了已有知識經驗、方法、技能,找出“16和12的公因數和最大公因數”。在這個過程中,由學生自己建構了公因數和最大公因數的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發(fā)掘了學生的自主意識。
1.增強師生和生生之間的互動
在教學過程中各個環(huán)節(jié)的銜接不夠緊湊,本課時的教學內容比較枯燥,在課堂上如何調動學生的積極性,活躍課堂氣氛,使學生學的輕松、扎實。今后的教學中,在這一點上要都多下功夫。本課時的教學中,在組織學生交流找“16和12的公因數”的方法時,指名回答的形式過于單調,有的同學沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學生生成的資源,幫助學生理解,局限學生的思維發(fā)展。
2.方法多樣化和方法優(yōu)化
在組織學生進行交流時,應該注重引導學生有層次地介紹各種不同的方法。同時還要引導學生進行方法的比較和優(yōu)化。
公因數和最大公因數的教學反思篇八
1、在復習的過程中,引導學生復習用多種方法找每個數的因數,豐富學生解決問題的多樣性。
2、通過復習、發(fā)現、總結,什么是公因數及最大公因數,在研究的過程中交流、總結自己的發(fā)現。
3、通過填寫集合圖,使學生了解集合的思想,并進一步體會公因數和最大公因數的關系。
4、通過練一練活動,引導學生獨立發(fā)現并總結出:(1)倍數關系的兩個數,最大的數就是這兩個數的最大公因數;(2)公因數只有“1”的兩個數(互質數),它們的最大公因數就是這兩個數的乘積。
5、在進一步的練習中,在學生獨立解決問題的基礎上,讓學生說出自己的思考方法,進行集體交流,相互學習,豐富學生解決問題的策略。
1、教學過程中,缺少對學生學習情況的評價 特別是鼓勵性的評價。
2、教學思想“由一般到抽象”的過程體現的不夠明了。
3、 對于教材的拓展不夠深入。
1、加強和提高對學生評價的意識,重視評價的功能。
2、在備課時,要清楚把握教學內容的梯度,使教學思想融入教學過程之中。
3、加強對教材的拓展,切實做到以教材為載體,以教學內容為導向,發(fā)展學生的數學能力。
公因數和最大公因數的教學反思篇九
本節(jié)課是在學生已經理解和掌握因數、倍數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和分數四則計算的基礎。我根據教材的編寫特點準確地制定了教學目標,即理解公因數及最大公因數的意義。知道任意兩個數都有公因數;能夠采用枚舉法找到兩個數的最大公因數。通過動手、觀察、思考等教學活動,從拼擺過程中發(fā)現公因數,再通過進一步探究明確公因數及最大公因數的含義。
以往教學公因數的概念,通常是直接找出兩個自然數的因數,然后讓學生發(fā)現有的因數是兩個數公有的,從而揭示公因數和最大公因數的概念。而本節(jié)課注意引導學生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導學生觀察這樣的幾組數據與長方形面積之間的關系——右面的這些數據都是左面這些數據的因數。三是揭示出公因數和最大公因數的含義——指出用紅筆標出的這些數據是左面這兩個數的公因數,找到這里面最大的一個公因數,完成由形象到抽象的過程,把感性認識提升為理性認識。
概念的內涵是指這個概念的所反映的一切對象的共同的本質屬性。公因數是幾個數公有的因數,可見“幾個數公有的”是公因數的本質屬性。因此在因數的基礎上學習公因數,關鍵在于突出“公有”的含義。本節(jié)課突出概念的內涵是“既是……也是……”即“公有”。教學中,我首先讓學生在練習本上找出12和16的因數,然后借助直觀的集合圖揭示出“既是12的因數,又是16的因數”這句話的含義,幫助學生進一步理解公因數和最大公因數的意義。這樣安排有兩點好處:一是學生通過操作活動,能體會公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。
概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認識很有好處。本節(jié)課我注意利用反例,來凸現公因數的含義。在用集合圖法來表示12和16的公因數的時候,找到填寫錯誤的學生的例子,提示學生注意:并集里填寫的是兩個數的公因數,而沒有交在一起的集合圖中,只填寫這兩個數的都有的因數,從而進一步明確公因數的概念。
教師的提問有時指向性不是很強,學生不能很快地明白老師的意圖,影響了學生的思考,須進一步提高。在教學“兩個長和寬都是整厘米數的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學生有些困難,我應該讓學生動手在本上畫一畫,幫助學生找到,降低難度,這點考慮不周,沒有切實聯(lián)系實際。
自己要學的東西還有很多,應注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學水平,更好地為學生服務。
公因數和最大公因數的教學反思篇十
《兩三位數除以一位數》商是兩位數是在學生學習了商是三位數和有余數除法的基礎上進行的,它是學習除數是多位數除法的基礎。因此要在引導學生解決具體問題的過程中,切實理解算理,掌握計算方法。
本節(jié)課我有意識的在一開始設計了搶答環(huán)節(jié),讓學生判斷大屏幕上幾道題目的商的位數,進而發(fā)現不同,激發(fā)興趣,引入本節(jié)課的學習。從效果上看,學生在判斷的過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達到了預期的目的。
本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領的比較多,學生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學生最后也弄明白了該如何分小棒,但學生的能力沒有得到提高。在于老師的建議下,在重建設計中,我會注意放手,設置大問題。比如:“請同學們看著大屏幕上的小棒,想一想應該怎樣分呢?先自己想一想,然后同桌交流一下。”讓學生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當引領點撥,但這和我之前的設計感覺就不一樣了,后者更能體現學生主體地位。在這方面,我今后還應提高意識,不斷實踐。
計算教學,單純的讓學生計算勢必會使學生產生厭倦。我聯(lián)系學生實際和生活實際,設計出多種多樣的練習題,比如:計算之后讓學生思考問題“想一想:三位數除以一位數,什么時候商是三位數,什么時候商是兩位數?”或讓學生“火眼金睛”辨別對錯,或讓學生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環(huán)節(jié),將思路滲透到日常教學中,或在最后讓學生根據所學再來一組比賽等,結合學生不同的計算階段提出不同的要求和練習形式,使單調枯燥的計算練習變得生動有趣,達到了較好的教學效果。
我將以本次講課為契機,在今后的教學中應用本次活動學到的知識,加以實踐,不斷提高自身的教學水平。
公因數和最大公因數的教學反思篇十一
一、適時地滲透集合思想。在教學例1時,解題過程不僅呈現了用列舉法解決問題。還引導學生用集合圖來表示答案,從而滲透了集合思想,為后續(xù)的學習奠定感性認識。
二、關注學生探究活動的空間,將自主探究活動貫徹始終。在教學中,教師為學生創(chuàng)設了三次自主探究的機會。即一在情境中通過動手操作認識公因數,二用集合圖表示因數之間的關系,三用自己的方法求出兩個數的最大公因數。在這幾次的探究活動中,教師始終積極地調動學生的情感,啟發(fā)他們主動參與,引導學生感知、理解,從而在腦中形成系統(tǒng)的知識體系。
本節(jié)課是教學運用最大公因數的有關知識來解決生活中的實際問題。通過創(chuàng)設生活情境,讓學生借助學具擺一擺,算一算或在紙上用彩筆畫一畫的方法把出現的幾種情況記錄下來,既提高學生的學習積極性,也讓學生體會到新知與生活的密切聯(lián)系。同時,通過引導學生自主探索、組織交流并驗證結論,讓學生體會獲得成功的喜悅,更加積極地探索新知,掌握所學知識。
本節(jié)課的不足之處在于練習部分時間過于倉促,沒有足夠的時間讓學生交流與理解,部分學困生掌握不夠到位。這需要教師在今后教堂中合理安排時間,避免時間過于緊迫。