人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。那么我們該如何寫一篇較為完美的范文呢?下面是小編為大家收集的優秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學說課稿萬能篇一
1.從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要資料,它不僅僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,并且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養.
2.從學生認知角度看
從學生的思維特點看,很容易把本節資料與等差數列前n項和從公式的構成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不一樣,這對學生的思維是一個突破,另外,對于q=1這一特殊情景,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學情分析
教學對象是剛進入高中的學生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹.
4.重點、難點
教學重點:公式的推導、公式的特點和公式的運用.
教學難點:公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題.
過程與方法目標:
經過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事.
情感與態度價值觀:
經過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點.
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的構成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1.創設情境,提出問題
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性.故事資料緊扣本節課的主題與重點.
此時我問:同學們,你們明白西薩要的是多少粒小麥嗎引導學生寫出麥粒總數.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識構成過程的氛圍,突破學生學習的障礙.同時,構成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.
2.師生互動,探究問題
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系(學生會發現,后一項都是前一項的2倍)
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,所以教學中應著力在這兒做文章,從而抓住培養學生的辯證思維本事的良好契機.
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.
3.類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
那里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自我探究公式,從而體驗到學習的愉快和成就感.
對不對那里的q能不能等于1等比數列中的公比能不能為1q=1時是什么數列此時sn=(那里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(引導學生得出公式的另一形式)
設計意圖:經過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和理解,變為對知識的主動認識,從而進一步提高分析、類比和綜合的本事.這一環節十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
高中數學說課稿萬能篇二
根據函數單調性在整個教材內容中的地位與作用,本節課教學應實現如下教學目標:
知識與技能使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;
過程與方法引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
情感態度與價值觀在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
根據上述教學目標,本節課的教學重點是函數單調性的概念形成和初步運用.雖然高一學生已經有一定的抽象思維能力,但函數單調性概念對他們來說還是比較抽象的。因此,本節課的學習難點是函數單調性的概念形成。
為了實現本節課的教學目標,在教法上我采取了
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達。
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
函數單調性的概念產生和形成是本節課的難點,為了突破這一難點,在教學設計上采用了下列四個環節。
(一)創設情境,提出問題
(問題情境)(播放中央電視臺天氣預報的音樂)。如圖為某地區20xx年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動]引導學生觀察圖象,提出問題:
問題1:說出氣溫在哪些時段內是逐步升高的或下降的?
問題2:怎樣用數學語言刻畫上述時段內“隨著時間的增大氣溫逐漸升高”這一特征?
[設計意圖]問題是數學的心臟,問題是學生思維的開始,問題是學生興趣的開始。這里,通過兩個問題,引發學生的進一步學習的好奇心。
(二)探究發現建構概念
[學生活動]對于問題1,學生容易給出答案。問題2對學生來說較為抽象,不易回答。
[教師活動]為了引導學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述.引導學生回答:對于自變量810,對應的函數值有14。舉幾個例子表述一下。然后給出一個鋪墊性的問題:結合圖象,請你用自己的語言,描述“在區間[4,14]上,氣溫隨時間增大而升高”這一特征。
在學生對于單調增函數的特征有一定直觀認識時,進一步提出:
問題3:對于任意的t1、t2∈[4,16]時,當t1
(t1)
[學生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發現數量關系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數概念的本質屬性,并嘗試用符號語言進行初步的表述。
[教師活動]為了獲得單調增函數概念,對于不同學生的表述進行分析、歸類,引導學生得出關鍵詞“區間內”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數稱之為單調增函數”,之后由他們集體給出單調增函數概念的數學表述.提出:
問題4:類比單調增函數概念,你能給出單調減函數的概念嗎?
最后完成單調性和單調區間概念的整體表述。
[設計意圖]數學概念的形成來自解決實際問題和數學自身發展的需要。但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的`經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程。剛升入高一的學生已經具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數學符號語言精確刻畫概念是本節課的難點。
(三)自我嘗試運用概念
1.為了理解函數單調性的概念,及時地進行運用是十分必要的。
[教師活動]問題5:(1)你能找出氣溫圖中的單調區間嗎?(2)你能說出你學過的函數的單調區間嗎?請舉例說明。
[學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調減區間和一個單調增區間.對于(2),學生容易舉出具體函數如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數的草圖,根據函數的圖象說出函數的單調區間。
[教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調區間,并指出學生回答問題時可能出現的錯誤,如:在敘述函數的單調區間時寫成并集。
[設計意圖]在學生已有認知結構的基礎上提出新問題,使學生明了,過去所研究的函數的相關特征,就是現在所學的函數的單調性,從而加深對函數單調性概念的理解。
[教師活動]問題6:證明在區間(0,+∞)上是單調減函數。
[學生活動]學生相互討論,嘗試自主進行函數單調性的證明,可能會出現不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。
[教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的證明過程,糾正出現的錯誤,規范書寫的格式。
[學生活動]學生自我歸納證明函數單調性的一般方法和操作流程:取值作差變形定號判斷。
[設計意圖]有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究。
(四)回顧反思深化概念
[教師活動]給出一組題:
2、若定義在r上的單調減函數f(x)滿足f(1+a)
[學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結本節課的內容和方法。
[設計意圖]通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對函數單調性認識的再次深化。
[教師活動]作業布置:
(1)閱讀課本p34-35例2
(2)書面作業:
必做:教材p431、7、11
探究:函數y=x在定義域內是增函數,函數有兩個單調減區間,由這兩個基本函數構成的函數的單調性如何?請證明你得到的結論。
[設計意圖]通過兩方面的作業,使學生養成先看書,后做作業的習慣。基于函數單調性內容的特點及學生實際,對課后書面作業實施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學生完成作業的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務的同時,拓展自主發展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成。
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。教師應當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養成、數學發現的能力,以及學習的興趣和成就感。學生熟悉的問題情境可以激發學生的學習興趣,問題串的設計可以讓更多的學生主動參與,師生對話可以實現師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養學生獨立思考的習慣。讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質的提高,為學生的可持續發展打下基礎。
高中數學說課稿萬能篇三
1本節內容在全書及章節的地位:
《向量》出現在高中數學第一冊(下)第五章第1節。本節內容是傳統意義上《平面解析幾何》的基礎部分,因此,在《數學》這門學科中,占據極其重要的地位。
2數學思想方法分析:
(1)從“向量可以用有向線段來表示”所反映出的“數”與“形”之間的轉化,就可以看到《數學》本身的“量化”與“物化”。
(2)從建構手段角度分析,在教材所提供的材料中,可以看到“數形結合”思想。
根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
1基礎知識目標:掌握“向量”的概念及其表示方法,能利用它們解決相關的問題。
2能力訓練目標:逐步培養學生觀察、分析、綜合和類比能力,會準確地闡述自己的思路和觀點,著重培養學生的認知和元認知能力。
3創新素質目標:引導學生從日常生活中挖掘數學內容,培養學生的發現意識和整合能力;《向量》的教學旨在培養學生的“知識重組”意識和“數形結合”能力。
4個性品質目標:培養學生勇于探索,善于發現,獨立意識以及不斷超越自我的創新品質。
重點:向量概念的引入。
難點:“數”與“形”完美結合。
關鍵:本節課通過“數形結合”,著重培養和發展學生的認知和變通能力。
建構主義學習理論認為,建構就是認知結構的組建,其過程一般是先把知識點按照邏輯線索和內在聯系,串成知識線,再由若干條知識線形成知識面,最后由知識面按照其內容、性質、作用、因果等關系組成綜合的知識體。本課時為何提出“數形結合”呢,應該說,這一處理方法正是基于此理論的體現。其次,本節課處理過程力求達到解決如下問題:知識是如何產生的?如何發展?又如何從實際問題抽象成為數學問題,并賦予抽象的數學符號和表達式,如何反映生活中客觀事物之間簡單的和諧關系。
教學過程是教師活動和學生活動的十分復雜的動態性總體,是教師和全體學生積極參與下,進行集體認識的過程。教為主導,學為主體,又互為客體。啟動學生自主性學習,啟發引導學生實踐數學思維的過程,自得知識,自覓規律,自悟原理,主動發展思維和能力。
1、讓學生在認知過程中,著重掌握元認知過程。
2、使學生把獨立思考與多向交流相結合。
(一)設置問題,創設情景。
2、(在學生討論基礎上,教師引導)通過“力的圖示”的回憶,分析大小、方向、作用點三者之間的關系,著重考慮力的作用點對運動的相對性與絕對性的影響。
設計意圖:
1、把教材內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過程。
2、我們知道,學習總是與一定知識背景即情境相聯系的。在實際情境下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識。這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情境中。
(二)提供實際背景材料,形成假說。
2、到達對岸?這句話的實質意義是什么?(學生討論,期望回答:指代不明。)
3、由此實際問題如何抽象為數學問題呢?(學生交流討論,期望回答:要確定某些量,有時除了知道其大小外,還需要了解其方向。)
設計意圖:
1、教師范文吧在稍稍超前于學生智力發展的邊界上(即思維的最鄰近發展)通過問題引領,來促成學生“數形結合”思想的形成。
2。通過學生交流討論,把實際問題抽象成為數學問題,并賦予抽象的數學符號和表達方式。
(三)引導探索,尋找解決方案。
1、如何補充上面的題目呢?從已學過知識可知,必須增加“方位”要求。
2。方位的實質是什么呢?即位移的本質是什么?期望回答:大小與方向的統一。
3、零向量、單位向量、平行向量、相等向量、共線向量等系列化概念之間的關系是什么?(明確要領。)
設計意圖:
學生在教師引導下,在積累了已有探索經驗的基礎上,進行討論交流,相互評價,共同完成了“數形結合”思想上的建構。
2、這一問題設計,試圖讓學生不“唯書”,敢于和善于質疑批判和超越書本和教師,這是創新素質的突出表現,讓學生不滿足于現狀,執著地追求。
3、盡可能地揭示出認知思想方法的全貌,使學生從整體上把握解決問題的方法。
(四)總結結論,強化認識。
經過引導,學生歸納出“數形結合”的思想——“數”與“形”是一個問題的兩個方面,“形”的外表里,蘊含著“數”的本質。
設計意圖:促進學生數學思想方法的形成,引導學生確實掌握“數形結合”的思想方法。
(五)變式延伸,進行重構。
教師引導:在此我們已經知道,欲解決一些抽象的數學問題,可以借助于圖形來解決,這就是向量的理論基礎。
下面繼續研究,與向量有關的一些概念,引導學生利用模型演示進行觀察。
概念1:長度為0的向量叫做零向量。
概念2:長度等于一個單位長度的向量,叫做單位向量。
概念3:方向相同或相反的非零向量叫做平行(或共線)向量。(規定:零向量與任一向量平行。)
概念4:長度相等且方向相同的向量叫做相等向量。
設計意圖:
1。學生在教師引導下,在積累了已有探索經驗的基礎上進行討論交流,相互評價,共同完成了有向線段與向量兩者關系的建構。
2。這些概念的比較可以讓學生加強對“向量”概念的理解,以便更好地“數形結合”。
3。讓學生對教學思想方法,及其應情境達到較為純熟的認識,并將這種認識思維地貯存在大腦中,隨時提取和應用。
(六)總結回授調整。
1。知識性內容:
例設o是正六邊形abcdef的中心,分別寫出圖中與向量oa、ob、oc相等的向量。
2。對運用數學思想方法創新素質培養的小結:
a。要善于在實際生活中,發現問題,從而提煉出相應的數學問題。發現作為一種意識,可以解釋為“探察問題的意識”;發現作為一種能力,可以解釋為“找到新東西”的能力,這是培養創造力的基本途徑。
b。問題的解決,采用了“數形結合”的數學思想,體現了數學思想方法是解決問題的根本途徑。
c。問題的變式探究的過程,是一個創新思維活動過程中一種多維整合過程。重組知識的過程,是一種多維整合的過程,是一個高層次的知識綜合過程,是對教材知識在更高水平上的概括和總結,有利于形成一個自我再生力強的開放的動態的知識系統,從而使得思維具有整體功能和創新能力。
2。設計意圖:
1、知識性內容的總結,可以把課堂教學傳授的知識,盡快轉化為學生的素質。
2、運用數學方法創新素質的小結,能讓學生更系統,更深刻地理解數學思想方法在解題中的地位和作用,并且逐漸培養學生的良好個性品質。這是每堂課必不可少的一個重要環節。
(七)布置作業。
反饋“數形結合”的探究過程,整理知識體系,并完成習題5。1的內容。
高中數學說課稿萬能篇四
1.教材背景
作為曲線內容學習的開始,“曲線與方程”這一小節思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側重對所求方程的檢驗。
本課為第二課時
主要內容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求。
2.本課地位和作用
承前啟后,數形結合
曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關鍵章節。
“曲線”與“方程”是點的軌跡的兩種表現形式。“曲線”是軌跡的幾何形式,“方程”是軌跡的代數形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題。體現了坐標法的本質——代數化處理幾何問題,是數形結合的典范。
后繼性、可探究性
求曲線方程實質上就是求曲線上任意一點(x,y)橫縱坐標間的等量關系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現運動變化特點,但如何獲得曲線的方程呢?通過創設情景,激發學生興趣,充分發揮其主體地位的作用,學習過程具有較強的探究性。
同時,本課內容又為后面的軌跡探求提供方法的準備,并且以后還會繼續完善軌跡方程的求解方法。
數學建模與示范性作用
曲線的方程是解析幾何的核心。求曲線方程的過程類似于數學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結規律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范。
數學的文化價值
解析幾何的發明是變量數學的第一個里程碑,也是近代數學崛起的兩大標志之一,是較為完整和典型的重大數學創新史例。解析幾何創始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質疑的科學精神等都是富有啟發性和激勵性的教育材料。可以根據學生實際情況,條件允許時指導學生課后收集相關資料,通過分析、整理,寫出研究報告。
3.學情分析
我所授課班級的學生數學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數方法研究幾何問題的科學性、準確性和優越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經有了自然的求知欲望。
二、目標分析
1.教學目標
知識技能目標
理解坐標法的作用及意義。
掌握求曲線方程的一般方法和步驟,能根據所給條件,選擇適當坐標系求曲線方程。
過程性目標
通過學生積極參與,親身經歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優越性,滲透數形結合的數學思想。
通過自主探索、合作交流,學生歷經從“特殊——一般——特殊”的認知模式,完善認知結構。
通過層層深入,培養學生發散思維的能力,深化對求曲線方程本質的理解。
情感、態度與價值觀目標
通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的喜悅,體會數學的理性與嚴謹,逐步養成質疑的科學精神。
展現人文數學精神,體現數學文化價值及其在在社會進步、人類文明發展中的重要作用。
2.教學重點和難點
重點:求曲線方程的方法、步驟
難點:幾何條件的代數化
依據:求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉。主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程。
曲線與方程是貫穿平面解幾的知識,是解析幾何的核心。求曲線方程是幾何問題得以代數研究的先決,求曲線方程的過程類似數學建模的過程,是課堂上必須突破的難點。
三、教學方法及教材處理
1.教學方法:探究發現教學法。
遵循以學生為主體,教師為主導,發展為主旨的現代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,通過學生主動探索、積極參與、共同交流與協作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現知識的建構和發展,通過不斷探究、發現,讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發揮。
2.學法指導
學生學法:互相討論、探索發現
由于學生在嘗試問題解決的過程中常會在新舊知識聯系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導。作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程程進行反思等,在師生(生生)互動中,給予學生啟發和鼓勵,在心理上、認知上予以幫助。
這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結構,使學生思維、能力等得到和諧發展。
3.設計理念:
求曲線方程就是將曲線上點的幾何表示形式轉化為代數表示形式。在這轉化過程中,學生通過積極參與、勇于探索的學習方式,讓學生的學習過程成為教師指導下的再創造,這也正是建構主義理論的本質要求;遵循學生認知規律,尊重學生個體差異,立足教材,通過對例題的再創造,體現理論聯系實際、循序漸進和因材施教的教學原則,讓不同層次的學生得到不同層度的發展;通過激發興趣,強調自主探索與合作交流,讓學生逐步地從學會走向會學,由被動走向主動,由課堂走向社會,為學生的終身學習和終身發展奠定良好的基礎,也是當前新課程所追求的基本理念。
四、教學過程(教學設計)
根據本課教學內容幾何特性外化的特點,抓住形成軌跡的動點具備的幾何條件,運用坐標化的手段及等價轉化與數形結合的思想方法,突破難點,突出重點。本課的.教學設計思路是:
創設情景——從感性的軌跡(圖形)認識,到解決生活上的實例,激發學生的求知欲望,抓住學生迫切一試的認知心理,自然引入坐標法的意義及曲線方程的求法。
例題探求——例題一體現知識的承前啟后。通過例題一的呈現,學生借助已有的知識經驗,自主探求獲得問題的求解,在教師的引導下,讓學生感受求曲線方程的含義及求解步驟;例題二及變式解決建系難點,建系的開放性,對學生是一種挑戰,也是一種創造;兩個例歸納步驟——學生親身經歷求曲線方程的過程,讓學生歸納(用自己的語言)、表述求解的步驟,體現從“特殊——一般”認知規律,逐步實現教學目標。
變式練習——通過對例題的變式,由學生求解、回答變式后的含義,深化對認知結構的理解,初步體會數學的理性與嚴謹,逐步養成質疑與反思的習慣。
反饋練習——利用學生探索而發展來的認知水平,運用獲得的知識解決情景創設中的實際問題,一方面可以考察學生運用所學數學知識解決實際問題的意識和能力;另一方面是學生思維的自然順應,自然釋放,是“一般——特殊”的過程。
全面完成教學目標。
高中數學說課稿萬能篇五
1.教材的地位與作用
二面角是我們日常生活中經常見到的、很普通的一個圖形。“二面角”是新編教材《數學》第二冊(下a)中的內容,它在學生學過空間中異面角、線面角之后,又要重點研究的一種空間的角,它也是學生進一步研究多面體和旋轉體的基礎。因此,它起著承上啟下的作用。同時,通過本節課的學習也可以培養學生的空間想象能力和邏輯思維能力,為培養學生的創新意識和創新能力提供了一個良好的契機。
2.教學目標
(1)知識目標:使學生掌握二面角的概念,二面角的平面角的定義、作法以及這些知識的初步應用。
(2)能力目標:培養學生的空間想象能力、邏輯思維能力、知識遷移能力及運用數學知識和數學方法觀察、研究現實現象的能力。
(3)德育目標:通過對實際問題的分析、探究,激發學生的學習興趣,并讓學生明白:數學和生活是密不可分的。
(4)情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。
3.重點、難點及關鍵
重點:二面角的平面角的定義及其作法
難點:面角的平面角的作法
關鍵:求作二面角的平面角
二、教學方法和手段
培養學生數學素質,首先數學課堂教學要素質化,即在課堂教學過程中,加強知識發生過程的教學,充分調動學生思維的主動性、積極性;有效地滲透數學思想方法,發展學生個性品質,從而達到提高學生整體的數學素養的目的。根據這樣的原則和所要完成的教學目標,我采用如下的教學方法和手段:
(1)教學方法:觀察發現、啟發引導、探索相結合的教學方法。啟發、引導學生積極的思考并對學生的思維進行調控,幫助學生優化思維過程;在此基礎上,提供給學生交流的機會,學生學會對自己的數學思想進行組織和澄清,并能清楚地、準確地表達自己的數學思想;能通過對其他人的思維和策略的考察擴展自己的數學知識和使用數學語言的能力。學生會自覺地、主動地、積極地學習。
(2)教學手段:利用多媒體教學手段。多媒體以聲音、動畫等多種形式強化對學生感官的刺激,這一點是粉筆和黑板所不能比擬的,采用這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標體現的更完美。
三、學法指導:觀察分析、猜想證明及類比聯想是學法指導的重點。讓學生觀察、思考后,總結、概括、歸納的知識更有利于學生掌握;為了加深知識理解、掌握和更靈活地運用,運用類比聯想去主動的發現問題、解決問題,從而更系統地掌握所學知識,形成新的認知結構和知識網絡,讓學生真正地體會到在問題解決中學習,在交流中學習。這樣,可以增進熱愛數學的情感,應用數學的自信心和形成新的學習動力。
四、教學過程
略
高中數學說課稿萬能篇六
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
1.教材所處的地位和作用:
本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。
2.教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3.重點,難點以及確定依據:
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關鍵:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1.教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點: 應著重采用 的教學方法。
2.教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3.學情分析:(說學法)
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(2)知識障礙上:知識掌握上,學生原有的知識,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙,知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
最后我來具體談談這一堂課的教學過程:
4.教學程序及設想:
(1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業。針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,教學程序:
課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分
高中數學說課稿萬能篇七
尊敬的各位專家、評委:
下午好!
我的抽簽序號是___,今天我說課的課題是《______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學法分析、教學過程分析和評價分析四方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據__在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________,教學難點是_________。
(一)教法
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
(二)學法在學法上我重視了: 1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。 2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(4)當堂訓練,鞏固深化。 通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(二)作業設計
我設計了以下作業: (1)必做題 (2)選做題
(三)板書設計 板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝!
高中數學說課稿萬能篇八
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個
高中數學中起著承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力
3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于
觀察勇于思考的學習習慣和嚴謹 的科學態度
根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應
當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。
高中數學說課稿萬能篇九
各位專家、評委:
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________________________,教學難點是_____________________。
(一)教法
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的`構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
(3)自我嘗試,初步應用。
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
(二)作業設計
我設計了以下作業:
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。謝謝!
高中數學說課稿萬能篇十
1.本節課主要內容是線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,根據約束條件建立線性目標函數。應用線性規劃的圖解法解決一些實際問題。
2.地位作用:線性規劃是數學規劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經濟管理等許多方面的實際問題。簡單的線性規劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內容的學習,使學生進一步了解數學在解決實際問題中的應用,以培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。
3.教學目標
(1)知識與技能:了解線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,能根據約束條件建立線性目標函數。
了解并初步應用線性規劃的圖解法解決一些實際問題。
(2)過程與方法:提高學生數學地提出、分析和解決問題的能力,發展學生數學應用意識,力求對現實世界中蘊含的一些數學模式進行思考和作出判斷。
(3)情感、態度與價值觀:體會數形結合、等價轉化等數學思想,逐步認識數學的應用價值,提高學習數學的興趣,樹立學好數學的自信心。
4.重點與難點
重點:理解和用好圖解法
難點:如何用圖解法尋找線性規劃的.最優解。
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
(1)啟發引導學生思考、分析、實驗、探索、歸納。這能充分調動學生的主動性和積極性。
(2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發揮學生的創造性。
(3)體現“等價轉化”、“數形結合”的思想方法。這樣可發揮學生的主觀能動性,有利于提高學生的各種能力。
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯想轉化、動手實驗、練習鞏固。
(1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。
(2)聯想轉化:學生通過分析、探索、得出解決問題的方法。
(3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。
(4)練習鞏固:讓學生知道數學重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。
1、導入課題:由一個不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問題,造成學生認知沖突。
3、導學達標之一:創設情境、形成概念
通過引例的問題讓學生探索解決新問題的方法。
(設計意圖:利用已經學過的知識逐步分析,學以致用,使學生經歷數學知識的形成過程,從而提高學生數學的地提出、分析和解決問題的能力。)
然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數、線性目標函數、線性規劃、可行解、可行域、最優解。并能根據引例提煉線性規劃問題的解法——圖解法。
(設計意圖:引導學生觀察和分析問題,激發學生的探索欲望,從而培養學生的解決問題和總結歸納的能力。)
4.導學達標之二:針對問題、舉例講解、形成技能
例一:課本61頁例3
(創設意境:,練習是使學生明白數學來源于實際又運用于實際,同時使學生進初步應用線性規劃的圖解法解決一些實際問題。)
6.鞏固目標:
練習一:學生做課堂練習p64例4
(叫學生提出解決問題的方法,并用多媒體展示,并根據問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優解的一種求法。)
練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調查了解到:生產每張書桌需要方木料0.1m3、五合板2m2,生產每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)
(設計意圖:通過實際問題,激發學生興趣,培養學生的數學應用意識,力求學生能夠對現實生活中蘊含的一些數學模式進行思考和作出判斷。)
7.歸納與小結:
小結本課的主要學習內容是什么?(由師生共同來完成本課小結)
(創設意境:讓學生參與小結,引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數學思維習慣)
8.布置作業:
p64.2
板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。
高中數學說課稿萬能篇十一
1、教材所處的地位和作用
奇偶性是人教a版第一章集合與函數概念的第3節函數的基本性質的第2小節。
奇偶性是函數的一條重要性質,教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節課起著承上啟下的重要作用。
2、學情分析
從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了必須數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。
3、教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1、能確定一些簡單函數的奇偶性。
2、能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。
【過程與方法】
經歷奇偶性概念的構成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。
【情感、態度與價值觀】
經過自主探索,體會數形結合的思想,感受數學的對稱美。
從課堂反應看,基本上到達了預期效果。
4、教學重點和難點
重點:函數奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然函數奇偶性這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下頭的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問題。所以,在介紹奇、偶函數的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。
難點:奇偶性概念的數學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數學化提煉過程設計為本節課的難點。
1、教法
根據本節教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態,從而培養思維本事。從課堂反應看,基本上到達了預期效果。
2、學法
讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發生、發展、構成的過程,從而使學生掌握知識。
具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、構成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下頭我對這六個環節進行說明。
(一)設疑導入、觀圖激趣
由于本節資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。經過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
(二)指導觀察、構成概念
在這一環節中共設計了2個探究活動。
探究1、2數學中對稱的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是經過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于y軸(原點)對稱。之后學生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規律引導學生先把它們具體化,再用數學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發現兩個函數的對稱性反應到函數值上具有的特性,()然后經過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個都成立。最終給出偶函數(奇函數)定義(板書)。
在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。
(三)學生探索、領會定義
探究3下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節課的難點)
(四)知識應用,鞏固提高
在這一環節我設計了4道題
例1確定下列函數的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。
例1設計意圖是歸納出確定奇偶性的步驟:
(1)先求定義域,看是否關于原點對稱;
(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
例2確定下列函數的奇偶性:
例3確定下列函數的奇偶性:
例2、3設計意圖是探究一個函數奇偶性的可能情景有幾種類型?
例4(1)確定函數的奇偶性。
(2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。經過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。
(五)總結反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。
在本節課的最終對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用本事、增強錯誤的預見本事是提高數學綜合本事的很重要的策略。
(六)分層作業,學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1、3a組第6題。
思考題:課本第39頁習題1、3b組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數學上得到不一樣的發展。
高中數學說課稿萬能篇十二
各位老師:
大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內容選自于新課程人教a版必修3第一章第一節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:
1.教材所處的地位和作用
現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。
2.教學的重點和難點
重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。
1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。
2.能力目標:讓學生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學生的觀察能力,表達能力和邏輯思維能力。
3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。
采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發現問題、分析問題、解決問題,培養學生的探究論證、邏輯思維能力。
算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節,但很容易激發學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節課的內容。
1.創設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法".
「設計意圖」是為了充分挖掘章頭圖的教學價值,體現
1)算法概念的由來;
2)我們將要學習的算法與計算機有關;
3)展示中國古代數學的成就;
4)激發學生學習算法的興趣。從而順其自然的過渡到本節課要討論的話題。(約4分鐘)
2.引入新課:在這一環節我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。
之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)
3.例題講解:在這一環節我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。
這兩道例題均選自課本的例1和例2.
例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:
(1)寫出的算法必須能解決一類問題,并且能夠重復使用。
(2)要使算法盡量簡單、步驟盡量少。
(3)要保證算法正確,且計算機能夠執行。
在例1的基礎上我們繼續研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)
4.課堂小結:
(1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然語言描述。
(3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節課的重點,對所學知識有一個系統整體的認識。(約6分鐘)
5.布置作業:課本練習1、2題
課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。