每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。范文怎么寫才能發揮它最大的作用呢?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。
三角形的內角說課稿人教版八上篇一
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。2月19日上午,在沈家門第一小學,我有幸聆聽了趙斌娜老師執教的《三角形的內角和》一課,這就是一堂好課。
趙老師營造了寬松和諧的課堂氣氛,讓學生能主動參與學習活動,既關注了學生的個人差異和不同的學習需求,又注重了學生的個體感悟,強調情感體驗的過程。確立了學生在課堂教學中的主體地位,使學生在學習過程中既調動了積極性,又激發了學生的主體意識和進取精神。學生在自主、合作、探究的學習方式中互相激勵,取長補短,能團結協作,最終形成了相應能力;同時培養了學生刻苦鉆研,事實求是的態度。
教學過程是一堂課關鍵中的關鍵,新課標提出數學教學是數學活動的教學,而數學活動應是學生自己建構知識的活動。教師讓學生“在參與中體驗,在活動中發展”。本節課有操作活動、自主探索與合作交流、應用活動三個方面,下面我重點談談操作活動。
1、在實踐材料上下了工夫。
操作實踐的材料是精心選擇的,老師為學生準備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學生應用起來很得手,操作的材料和學生的動手實踐配合恰當。
2、找準時機讓學生進行實踐操作。
本節課安排了兩次操作活動:一是在得出三角形內角和規律前進行實踐操作,促使學生在實踐操作中探究新知識;二是在初步得出規律之后,讓學生通過實踐操作來驗證新知識。幫助學生清楚地認識到第一次出現內角和偏差的原因是測量誤差造成的。給學生提供的這兩次動手實踐的機會,不僅提高了操作的效果,更重要的使“聽數學”變為“做數學”。促使學生在“做數學”的過程中對所學知識產生了深刻的體驗,從中感悟和理解到新知識的形成和發展,體會了數學學習的過程與方法,獲得數學活動的經驗。
3、把實踐操作和數學思維結合起來。
學生通過實踐操作獲得的認識是一種感性的認識,是外在的直觀的印象。在本節課中趙老師在學生實踐操作的基礎上引導學生把動手實踐和數學思維結合起來,先讓學生思考出可以用量、撕和拼的方法來推導三角形內角和的度數,接著引導學生說出量的方法,最后讓學生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學的基礎上及時對三角形內角和規律進行抽象概括。做到邊動手,邊思考。同時學生獲得了一種數學思想和方法,學會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
三角形的內角說課稿人教版八上篇二
“三角形的內角和”是人教版小學數學四年級下冊第五單元第四節的內容,“三角形的內角和”是三角形的一個重要性質。本課教學內容不算多,學生只需要翻看課本就會知道三角形的內角和是180°,但是陳麗老師并沒有讓學生這樣做。“數學學習的過程實際上是數學活動的過程”。課程標準要求我們“將課堂還給學生,讓課堂煥發生命的活力”,要求我們“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創造者,落實學生的主體地位,促進學生的自主學習和探究。”在教學中,陳老師力求探究,將教學思路擬定為“創設情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結——拓展應用,反思升華”四個環節,努力構建探究型的課堂教學模式。具體體現在以下幾個方面:
課一開始,陳老師創設了一個實踐操作的活動情境:讓學生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學生同樣也不知道畫不出來。簡單的活動激活了學生的思維,讓他們產生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內最大限度的激發學生探究數學的愿望和興趣,而且也很自然地揭示了課題。
在教學中,陳老師巧妙運用“猜想、驗證”的方式引導學生進行自主學習和探究活動。學生大膽猜想三角形的內角和是180°,讓學生對問題形成了統一的認識,使后邊的探索和驗證活動有了明確的目標。這個時候,陳老師就把課堂大量的時間和空間留給學生,在學生交流探究設想和打算采用的方法后,放手讓每個同學自主參與驗證活動,在經歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結論的形成不缺乏科學性。這個環節的設計更重要的是變“聽數學”為“做數學”,讓學生在“做中學”。
學生在活動中體驗,在交流中消除疑惑,獲得新知。這節課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導學生對獲得知識所用的方法進行了總結,加強了學法指導。
課程標準提倡練習的'有效性。本節課的練習設計陳老師非常注意將數學的思考融入不同層次的練習之中,很好的發揮練習的作用。兩個小三角形拼成一個較大的三角形互動練習讓學生進一步理解任意三角形的內角和都是180°;后面的練習設計從圖形到文字,由一般到特殊;“開心一刻”更是把學生帶到無窮的學習樂趣之中。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數學思維得到不斷的發展。
兩點建議:
2、學生的猜想結果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學生的學習活動更流暢的進入下一個環節。
總之,我個人認為陳老師對“四步教學法”模式的把握是成功的,學生在這種課堂教學模式下的學習是自主的,是活動的,也是快樂的。
三角形的內角說課稿人教版八上篇三
一、構建新的課堂教學模式。
傳統的教學往往只重視對結論的記憶和模仿,而這節課老師把學生的學習定位在自主建構知識的.基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養學生勇于猜想,大膽創新的精神。
教學中趙老師遵循的基本教學原則是激勵學生展開積極的思維活動.先創設猜角的游戲情景,讓學生對三角形的三個角的度數關系產生好奇,引發學生的探究欲望.
三、為學生提供了大量數學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔.”這正是課堂教學改革中學生的主體性的表現。所以在這節課中趙老師樹立了數學教學為學生服務,創設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發學生去思考,去探究.這樣學生的潛能的以激活,思維展開了想象,能力得以發展.
四、給學生一個開放探究的學習空間.
培養學生的問題意識是數學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發出新的問題,使學生體會到成功的喜悅,使數學課堂充滿挑戰.所以課堂上老師沒有因學生發現三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規律,這樣學生帶著問題在課后向更高的學習目標繼續探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
三角形的內角說課稿人教版八上篇四
一、說課內容:北師大版義務教育課程標準實驗教材小學數學四年級下冊第二單元第三節----《三角形的內角和》一課。
二、教材分析:
在這一環節我要闡述四方面的內容:
1、三角形的內角和”是三角形的一個重要性質,是“空間與圖形”領域的重要內容之一,學好它有助于學生理解三角形內角之間的關系,教材呈現教學內容時,安排了一系列的實驗操作活動。讓學生通過探索,發現三角形的內角和是180度。
2、學情分析:
學生已經知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內角和是180°的結論。
3、教學目標:
a、讓學生親自動手,發現,證實三角形的內角和等于180度。并能初步運用這一性質解決有一些實際問題。
b、在經歷“觀察、測量、撕拼、折疊”的驗證的過程中培養學生觀察能力,歸納能力、合作能力和創造能力。
4、教學重難點:
經歷三角形的內角和是180度這一知識的形成,發展和應用的全過程。
5、教學難點:
讓學生用不同方法驗證三角形的內角和是180度。
三、教學準備:
在備課過程中,我閱讀了農遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農遠光盤中的多媒體課件,用課件適時播放。
四、教法分析
為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程。要激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發現法、合作探究法和直觀演示法。
五、學法分析
在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現了學生動手實踐、合作交流,自主探索的學習方式。
六:教學流程:
(一)猜迷激趣,復習舊知。,
興趣是最好的老師,開課我出示了一則謎語。調動學生學習的積極性。
形狀是似座山,穩定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)
由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內角和”一詞的講解,為后面的探索奠定基礎。
(二)創設情境,巧引新知(課件出示)
(三)驗證猜想,主動探究。
本環節是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。
“你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:
a、先獨立思考,你想怎樣驗證?
b、再小組合作探究,運用多種方法驗證。
c、最后匯報,展示你的驗證方法。
1.量角求和
這個驗證方法應是全班同學都能想到的,因此,在這一環節我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發現三角形的三個內角和都是180度。
2.拼角求和
通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發現這三個三角形的內角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。
3.折角求和
有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內角剛好組成平角呢?這一驗證方法是本課教學的一個難點。
在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發現。最后歸納出結論:所有三角形的內角和都是180度。
(四)應用新知,解決問題。
數學離不開練習。本節課我把圖像、動畫等引入課件,使練習的內容具有簡單的背景與情節,使學生對解題產生了濃厚的興趣。
我設計了四個層次的練習:有序而多樣。
1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。
2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數學,數學能解決生活實際問題,真切體驗到學的是有價值的數學。
3)鞏固提高:使學生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學生體會到數學中輔助線的橋梁作用,在潛移默化中滲透一個重要數學思想―――轉化,為以后學習數學打下堅實的基礎。
(五)全課小結完善新知
1、這節課我們學到了什么知識?2、你有什么收獲?
通過學生談這節課的收獲,對所學知識和學習方法進行系統的整理歸納。
(六)板書設計
三角形的內角和
量角撕拼折角拼圖
三角形的內角和是180度。
六、說效果預測:
本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養了他們主動探索的精神。促進學生良好思維品質的形成,達到預想的教學目的。使學生在探索中學習,在探索中發現,在探索中成長!
三角形的內角說課稿人教版八上篇五
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經掌握了角的`分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數,認識了三角形的基本特征及其分類,由于學生的數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題策略的多樣化。
2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°并會應用這一規律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
針對這一目標的完成,我設計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現性評價:通過小組討論表現、學生回答問題情況,適當對學生進行點撥。
1、通過3個練習題(1、做一做。2、說一說.3、拼一拼、想一想。)。
檢測學習目標1的掌握情況。
2、通過小組、同桌合作、匯報,教師引導學生理解本節課所蘊含的學習方法,檢測學習目標2的掌握情況。
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。
學具準備:三角板、量角器。
這節課的教學我通過一下四個環節完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、總結評價、延伸知識。
第一環節,觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發現在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發現再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
第二環節,動手操作,探索新知。
先讓學生觀察一副三角板的內角和,發現都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環節引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環節、鞏固新知,拓展應用。
用三角形的這一特性來解決一些問題。
1、基本練習。
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習。
拼一拼、想一想。
(1)兩個三角形拼成大三角形,說出大三角形的內角和。
(2)一個三角形去掉一部分。
引導學生發現,無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環節、總結評價、延伸知識。
通過這個環節讓學生談一談自己的收獲或感受,對本節課的知識進行拓展升華。
猜測(180度)。
驗證:測量、撕拼、折疊結論。
我的板書簡明扼要,體現了本節課的重點,而且是對本節課學習方法的一個回顧。
三角形的內角說課稿人教版八上篇六
各位老師:
你們好,我是來應聘xx數學老師的x號考生,我今天抽到的試講題目是《三角形的內角和》,下面開始我的試講。
大家拿出事先準備好的三角板和量角器吧,同學們,你們現在用量角器來測量一下每一個三角形的角的度數,待會老師會進行統計。(轉身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數據有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發現了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內角和是180度。
可是是不是所有內角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內角度數,并報給老師內角和。好,請第一排的女生起來回答,你的三個內角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。
下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結論呢?給大家十分鐘時間來討論。
老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內角和是180度。
那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。
大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數,有沒有同學告訴我剩下的度數啊?趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。
這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!
三角形的內角說課稿人教版八上篇七
三角形的內角和是北師大版四年級下冊第二單元的內容。三角形的內角和是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。
本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內角和的規律,打下了堅實的基礎。
因此,我確定本節課的教學目標是:
知識與技能:通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180。知道三角形兩個角的度數,能求出第三個角的度數。能應用三角形內角和的性質解決一些簡單的問題。
發展學生動手操作、觀察比較和抽象概括的能力。
情感、態度與價值觀:體驗數學活動的探索樂趣,體會研究數學問題的思想方法。
學生經歷探究三角形內角和的全過程并歸納概括三角形內角和等于180。
三角形內角和的探索與驗證,對不同探究方法的指導和學生對規律的靈活應用。
整個教學將體現以人為本,先放后扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據學生的不同探究方法和出現的錯誤,給予恰當指導,引導學生歸納概括出規律。
《課程標準》明確指出:要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內角的度數和。這樣,既培養了觀察能力和歸納概括能力,又體現了動手實踐、合作交流,自主探索的學習方式,同時也培養了探索能力和創新精神。
基于以上分析,我以猜測、驗證、結論和應用四個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。
通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內角的概念,讓學生自由猜測,三角形內角和是多少?引出課題,以疑激思。
動手實踐,自主探究,是學生學習數學的重要方式,新課程的一個重要理念就是提倡學生做數學用親身體驗的方式來經歷數學,探究數學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。
這一環節我設計為以下三步:
1、操作感知。
組織學生通過算一算初步感知三角形的內角和。根據學生特點,為了節約學生上課的時間,作為預習作業,我提前讓學生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數,寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結果,不同的學生可能會有不同的結果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結論(強調在排除測量誤差的前提下):三角形的內角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內在需要。
2、小組合作。
針對探究過程中不同思維能力的學生,要做到因材施教。對于得出結論的學生要鼓勵他們思考新的方法,對于無法下手的學生,要啟發他們知道三角形的內角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,盡可能用多種合理的方法,驗證結論。
3、交流反饋,得出結論。
學生完成探究活動之后,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關注的不是學生最后論證的結果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發現這一規律是具有普遍性的,對于任意三角形都是適用。在學生探究之后,我用課件重新演示了3種方法,讓學生有一個系統的知識體系。
揭示規律之后,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內化。根據學生能力的不同,我將練習分為以下3個層次。
1、基礎練習。要求學生利用三角形內角和是180度在三角形內已知兩個角,求第三個角。由于學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。
2、提高練習。如已知一個直角三角形的一個角的度數,求另一個角的度數;已知一個等腰三角形的頂角或底角的度數,求底角或頂角的度數。
3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生應用三角形內角和是180的規律,求多邊形的內角和。我的目的不僅僅是為了讓學生去求解多邊形的內角和,更重要的是為了讓學生靈活應用知識點,培養學生的空間思維能力。
這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,盡量滿足學生的學習需要,啟發學生的思維活動。
本節課通過這樣的設計,學生全身心投入到數學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領略成功的喜悅,學生在探索中學習,在探索中發現,在探索中成長,最終實現可持續性發展。
猜測驗證結論應用。
三角形的內角說課稿人教版八上篇八
一、構建新的課堂教學模式。
傳統的教學往往只重視對結論的記憶和模仿,而這節課老師把學生的學習定位在自主建構知識的基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
二、培養學生勇于猜想,大膽創新的精神。
教學中老師遵循的基本教學原則是激勵學生展開積極的思維活動。先創設猜角的游戲情景,讓學生對三角形的三個角的度數關系產生好奇,引發學生的探究欲望。
三、為學生提供了大量數學活動的機會,讓學生真正成為學習的主人。
“給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔。”這正是課堂教學改革中學生的主體性的表現。所以在這節課中老師樹立了數學教學為學生服務,創設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內角和這一核心問題,引發學生去思考,去探究。這樣學生的潛能的以激活,思維展開了想象,能力得以發展。
四、給學生一個開放探究的學習空間。
培養學生的問題意識是數學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發出新的問題,使學生體會到成功的喜悅,使數學課堂充滿挑戰。所以課堂上老師沒有因學生發現三角形內角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內角和延伸,使學生悟出規律,這樣學生帶著問題在課后向更高的學習目標繼續探索,一追求更大的成功。
一堂好課不應是自始至終的高潮和精彩,也不必是高科技現代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
將本文的word文檔下載到電腦,方便收藏和打印。