日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 2023年高中數學教案全套必修一(大全8篇)

2023年高中數學教案全套必修一(大全8篇)

格式:DOC 上傳日期:2023-12-19 16:48:02
2023年高中數學教案全套必修一(大全8篇)
時間:2023-12-19 16:48:02     小編:筆舞

作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學能力。那么問題來了,教案應該怎么寫?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。

高中數學教案全套必修一篇一

一)、培養良好的學習興趣。

1、課前預習,對所學知識產生疑問,產生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。

3、思考問題注意歸納,挖掘你學習的潛力。

5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。

二)、建立良好的學習數學習慣。

習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

三)、有意識培養自己的各方面能力。

數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

高中數學教案全套必修一篇二

對重點內容應重點復習.首先擬出主要內容,然后有目的有針對性地做相關內容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習.

高考數學命題除了著重考查基礎知識外,還十分重視對數學方法的考查,如配方法、換元法、分離常數法等操作性較強的數學方法.同學們在復習時應對每一種方法的實質,它所適應的題型,包括解題步驟都熟練掌握.其次應重視對數學思想的理解及運用,如函數思想、數形結合思想.

應注意實際問題的解決和探索性試題的研究。

現在各地風行素質教育,呼吁改革考試命題.增強運用數學知識解決實際問題的試題,在其他省市的高考命題中已經體現,而且難度較大,這一部分尤其是探索性命題在平時學習中較少涉及,希望同學們把近幾年其他省、市高考試題中有關此內容的題目集中研究一下,有備無患.這一階段,重點是提高學生的綜合解題能力,訓練學生的解題策略,加強解題指導,提高應試能力.

高中數學教案全套必修一篇三

各位老師大家好!

我說課的內容是人教版a版必修2第三章第一節直線的傾斜角與斜率第一課時。

(一)教材分析。

本節課選自必修2第三章(解析幾何的第一章)第一節直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數表示;學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以解析法的方式來研究直線相關性質,而本節課直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節課也初步向學生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。

(二)學情分析。

本節課的教學對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上知道兩點確定一條直線,知道點與坐標的關系,實現了最簡單的形與數的轉化;了解刻畫傾斜程度可用角和正切值;具備了一定的數形結合的能力和分類討論的思想。但根據學生的認知規律,還沒有形成自覺地把數學問題抽象化的能力。所以在教學設計時需從學生的最近發展區進行探究學習,盡量讓不同層次的學生都經歷概念的形成、鞏固和應用過程。

(三)教學目標。

1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。

2.掌握過兩點的直線斜率的計算公式;。

3.通過經歷從具體實例抽象出數學概念的過程,培養學生觀察、分析和概括能力;。

生嚴謹求簡的數學精神。

重點:斜率的概念,用代數方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。

難點:直線的傾斜角與斜率的概念的形成,斜率公式的構建。

(四)教法和學法。

課堂教學應有利于學生的數學素質的形成與發展,即在課堂教學過程中,創設問題的情景,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效的滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。根據這樣的教學原則,考慮到學生首次接觸解析幾何的內容及研究方法,所以我采用設置問題串的形式,啟發引導學生類比、聯想,產生知識遷移;通過幾何畫板演示實驗、探索交流相結合的教學方法激發學生觀察、實驗,體驗知識的形成過程;由此循序漸進,使學生很自然達到本節課的學習目標。

(五)教學過程。

環節1.指明研究方向(3min)。

簡介17世紀法國數學家笛卡爾和費馬的數學史。

高中數學教案全套必修一篇四

1.理解直線的方程的概念,會判斷一個點是否在一條直線上.

2.培養學生勇于發現、勇于探索的精神,培養學生合作交流等良好品質.

【教學重點】。

直線的特征性質,直線的方程的概念.

【教學難點】。

直線的方程的概念.

【教學方法】。

這節課主要采用分組探究教學法.本節首先利用一次函數的解析式與圖象的關系,揭示代數方程與圖形之間的關系,然后用集合表示的性質描述法闡述直線與方程的對應關系,進而給出直線的方程的概念.本節教學中,要突出用集合的觀點完成由形到數、由數到形的轉化.

【教學過程】。

環節。

教學內容。

師生互動。

設計意圖。

引入。

1.用性質描述法表示大于0的偶數構成的集合,并判斷-1和6在不在這個集合中.

2.作函數y=x+3的圖象,并判斷點(0,1)和(-2,1)在不在函數的圖象上.

教師提出問題,學生解答.

教師點評.

復習本節相關內容.

新課。

1.函數與圖象。

一次函數的圖象是一條直線,如y=x+3的圖象是直線ab,如圖所示.

2.直線的特征性質。

例如,通過點(2,0)且垂直于x軸的直線l.

一般地,在平面直角坐標系中,給定一條直線,如果直線上點的坐標都滿足某個方程,而且滿足這個方程的坐標所表示的點都在直線上,那么這個方程叫做直線的方程.

例分別給出下列直線的方程:

(1)直線m平行于x軸,且通過點(-2,2);。

(2)y軸所在的直線.

練習。

(1)寫出垂直于x軸且過點(5,-1)的直線方程.

(2)已知點(a,3)在方程為y=x+1的直線上,求a的值.

師:y=x+3是一個代數方程,而直線ab是一個幾何圖形,也就是說,代數方程可以用幾何圖形表示,幾何圖形也可以用代數方程來表示.

學生在教師引導下理解代數方程與幾何圖形的對應關系.

師:既然直線是點的集合,那么我們就可以利用集合的特征性質來解決這一問題.

師:如圖,在直線l上的點的橫坐標有什么特點?橫坐標是2的點也一定在直線l上嗎?

直線l的特征性質能用x=2來表述嗎?

學生回答教師提出的問題.

師:對于平面直角坐標系中的任意一點,只要看它的坐標是否滿足x=2,就能判斷出點是否在直線l上.

點a(2,1)的坐標滿足方程x=2嗎?點a在直線l上嗎?

點b(2.3,2)滿足方程x=2嗎?點b在直線l上嗎?

教師強調要從兩方面來說明某個方程是不是給定直線的方程.

師:由上面分析,通過點(2,0)且垂直于x軸的直線l的方程是什么?

學生回答.

教師引導學生解答.引導過程中進一步強調直線上的點的坐標都滿足方程,而且滿足這個方程的坐標所表示的點都在直線上.

學生小組合作完成練習,教師巡視了解學生掌握情況.

由特殊到一般,為引入直線的方程提供基礎.

提出解決問題的方法.

引導學生分析直線l的坐標特點,為概念的引入打下基礎.

通過具體的例子來說明判斷某點是否在給定直線上的方法.

通過例題進一步加強學生對概念的理解.

小結。

1.直線的方程的概念.

師生共同回顧本節內容,進一步深化對概念的理解.

總結本節內容.

作業。

教材p73練習a組題.

教材p73練習b組題(選做).

學生標記作業.

針對學生實際,對課后書面作業實施分層設置.

語文、數學、英語、歷史、地理、政治、化學、物理、生物、美術、音樂、體育、信息技術。

語文、數學、英語、歷史、地理、政治、化學、物理、生物、美術、音樂、體育、信息技術。

高中數學教案全套必修一篇五

函數思想在解題中的應用主要表現在兩個方面:一是借助有關初等函數的性質,解有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題:二是在問題的研究中,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,達到化難為易,化繁為簡的目的。函數與方程的思想是中學數學的基本思想,也是歷年高考的重點。

1、函數的思想,是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。

3、函數方程思想的幾種重要形式。

(1)函數和方程是密切相關的,對于函數y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數式y=f(x)看做二元方程y-f(x)=0。

(6)立體幾何中有關線段、角、面積、體積的計算,經常需要運用布列方程或建立函數表達式的方法加以解決。

高中數學教案全套必修一篇六

函數思想在解題中的應用主要表現在兩個方面:一是借助有關初等函數的性質,解有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題:二是在問題的研究中,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,達到化難為易,化繁為簡的目的。函數與方程的思想是中學數學的基本思想,也是歷年高考的重點。

1.函數的思想,是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。

3.函數方程思想的幾種重要形式。

(1)函數和方程是密切相關的,對于函數y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數式y=f(x)看做二元方程y-f(x)=0。

(6)立體幾何中有關線段、角、面積、體積的計算,經常需要運用布列方程或建立函數表達式的方法加以解決。

高中數學教案全套必修一篇七

期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。

教學重點與難點。

重點:離散型隨機變量期望的概念及其實際含義。

難點:離散型隨機變量期望的實際應用。

[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。

二、教學目標。

[知識與技能目標]。

通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

[過程與方法目標]。

經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。

通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。

[情感與態度目標]。

通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。

三、教法選擇。

引導發現法。

四、學法指導。

“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。

高中數學教案全套必修一篇八

1、教材(教學內容)。

2、設計理念。

3、教學目標。

情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、

4、重點難點。

重點:任意角三角函數的定義、

難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、

5、學情分析。

6、教法分析。

7、學法分析。

本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服