日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 2023年勾股定理說課稿10分鐘(15篇)

2023年勾股定理說課稿10分鐘(15篇)

格式:DOC 上傳日期:2022-12-25 23:26:31
2023年勾股定理說課稿10分鐘(15篇)
時間:2022-12-25 23:26:31     小編:zdfb

在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看吧。

勾股定理說課稿10分鐘篇一

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大,我們的教材在編寫時注意培養大家的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并且掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、主要就是培養學生觀察、比較、分析、推理的能力。

4、通過介紹我們中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

教學重點:

勾股定理的證明和應用。

教學難點:

勾股定理的證明。

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

(一)創設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5,小學數學教案《數學 - 勾股定理說課稿》。這樣引起學生學習興趣,激發學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:

怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

勾股定理說課稿10分鐘篇二

(一)教材地位

這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標

1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

2、過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。

3、情感態度與價值觀: 激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

(三)教學重點

經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發現勾股定理。

突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

學情分析:

七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。

另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

教法分析:

結合七年級學生和本節教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。

把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

三、教學過程設計

(一)創設情境,提出問題

(1)圖片欣賞勾股定理數形圖

1955年希臘發行美麗的勾股樹

20xx年國際數學的一枚紀念郵票

大會會標

設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

(二)實驗操作模型構建

1、等腰直角三角形(數格子)

2、一般直角三角形(割補)

問題一:對于等腰直角三角形,正方形ⅰ、ⅱ、ⅲ的面積有何關系?

設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

問題二:對于一般的直角三角形,正方形ⅰ、ⅱ、ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

通過以上實驗歸納總結勾股定理。

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律。

(三)回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

(四)知識拓展鞏固深化

基礎題,情境題,探索題。

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為x,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創設情境 ,鍛煉了發散思維。

情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

(五)感悟收獲布置作業

這節課你的收獲是什么?

作業:

1、課本習題2.1

2、搜集有關勾股定理證明的資料。

探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

圖文搜集自網絡,如有侵權,請聯系刪除。

鐵樹老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴

勾股定理說課稿10分鐘篇三

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

教學重點:勾股定理的證明和應用。

教學難點:勾股定理的證明。

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

(一)創設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形。如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知。體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流;先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥。最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

勾股定理說課稿10分鐘篇四

尊敬的各位考官:

大家好,我是x號考生,今天我說課的題目是《勾股定理的逆定理》。

新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。

首先來談一談我對教材的理解。

本節課選自人教版初中數學八年級下冊第十七章第二節《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節課的關鍵步驟,同時本節課又豐富了三角形的性質,是后面幾何問題的基礎理論性知識。

接下來談談學生的實際情況。本階段的學生已經掌握了一定的基礎知識,處于由幾何內容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。

根據以上對教材的分析以及對學情的把握,我制定了如下教學目標:

(一)知識與技能

理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。

(二)過程與方法

經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

(三)情感、態度與價值觀

體會事物之間的聯系,感受幾何的魅力。

在教學目標的實現過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。

為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。

下面我將重點談談我對教學過程的設計。

(一)導入新課

課堂伊始,我采用復習舊知與創設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的3、4、5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。

通過這樣的導入方式,能夠帶領學生回顧上節課的內容,為本節課奠定好基礎,同時用情境激發學生的好奇心和求知欲,更好地展開教學。

(二)講解新知

接下來是最重要的新授環節。

請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確

出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。

學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。

在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題。

勾股定理說課稿10分鐘篇五

本課時是華師大版八年級(上)數學第14章第二節內容,是在掌握勾股定理的基礎上對勾股定理的應用之一。 勾股定理是我國古數學的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用。 據此,制定教學目標如下:

1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。

2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。

3、情感與態度目標:感受數學在生活中的應用,感受數學定理的美。

教學重點:勾股定理的應用。

教學難點:勾股定理的正確使用。

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望。

本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下:

勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。

1、如圖所示,有一個圓柱,它的高ab等于4厘米,底面周長等于20厘米,在圓柱下底面的a點有一只螞蟻,它想吃到上底面與a點相對的c點處的食物,沿圓柱側面爬行的最短路線是多少?(課本p57圖14.2.1)

①學生取出自制圓柱,,嘗試從a點到c點沿圓柱側面畫出幾條路線。思考:那條路線最短?

②如圖,將圓柱側面剪開展成一個長方形,從a點到c點的最短路線是什么?你畫得對嗎?

③螞蟻從a點出發,想吃到c點處的食物,它沿圓柱側面爬行的最短路線是什么?

思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發現“兩點之間的所有線中,線段最短”。 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發現螞蟻從a點往上爬到b點后順著直徑爬向c點爬行的路線是最短的!我也意外的發現了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本p58圖14.2.3)

思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于ch,點d在離廠門中線0.8米處,且cd⊥ab, 與地面交于h,尋找出rt△ocd,運用勾股定理求出2.3m,cd= = =0.6,ch=0.6+2.3=2.9>2.5可見卡車能順利通過 。詳細解題過程看課本 引導學生完成p58做一做。

1、課本p58練習第1,2題。

2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內通過?為什么?

直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質,學透勾股定理的具體應用,那樣就能很輕松的解決現實生活中的許多問題,達到事倍功半的效果。

課本p60習題14.2第1,2,3題。

勾股定理說課稿10分鐘篇六

(一)教材所處的地位

這節課是九年制義務教育課程標準實驗教科書八年級第十八章第一節勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)根據課程標準,本課的教學目標是:

1、知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。

2、數學思考:在勾股定理的探索過程中,發展合情推理能力,體會數形結合的思想。

3、解決問題:①通過拼圖活動,體驗數學思維的嚴謹性,發展形象思維。

②在探究過程中,學會與人合作并能與他人交流思維的過程和探究的結果。

4、情感態度:①通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激發學生發奮學習。

②在探究過程中,體驗解決問題方法的多樣性,培養學生的合作交流意識和探索精神。

(三)本課的教學重點:探索和證明勾股定理

本課的教學難點:用拼圖的方法證明勾股定理

教法分析:針對八年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題實驗操作歸納驗證問題解決鞏固練習課堂小結 布置作業七部分。

學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

(一)提出問題:

首先提出問題1:你知道下圖所表示的意義嗎?創設問題情境,2002年在北京召開了第24屆國際數學家大會,它是最高水平的全球性數學科學學術會議,被譽為數學界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發學生的求知欲。

其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生的學習興趣,激發學生的求知欲。

勾股定理說課稿10分鐘篇七

各位專家領導:

上午好!今天我說課的課題是《勾股定理》。

(一)本節內容在全書和章節的地位。

這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

(二)三維教學目標:

1、知識與能力目標。

(1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

(2)通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

2、過程與方法目標。

在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

3、情感態度與價值觀。

通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

(三)教學重點、難點:

1、教學重點:勾股定理的證明與運用

2、教學難點:用面積法等方法證明勾股定理

3、難點成因:

對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

4、突破措施:

(1)創設情景,激發思維:

創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

(2)自主探索,敢于猜想:

充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

(3)張揚個性,展示風采:

實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

1、教法分析:

數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。

2、學法分析:

新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

(一)創設情景:

多媒體課件演示flash小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

(二)動手操作:

1、課件出示課本p99圖19.2.1:

觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現sp+sq=sr(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠c=90°,ac=bc時,則 ac2+bc2=ab2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

2、緊接著讓學生思考:

上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出p100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形p和q的面積,只是求正方形r的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

3、再問:

當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

(三)歸納驗證:

1、歸納:

通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

2、驗證:

先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。

(四)問題解決:

1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

2、自學課本p101例1,然后完成p102練習。

(五)課堂小結:

1、小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

2、教師用多媒體介紹“勾股定理史話”。

(1)《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。

(2)康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

3、目的:對學生進行愛國主義教育,激勵學生奮發向上。

(六)布置作業:

課本p104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

勾股定理說課稿10分鐘篇八

勾股定理是九年制義務教育教科書八年級下冊第十七章的內容,是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

針對八年級學生的知識結構、心理特征及學生的實際情況,可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

(一)知識與技能

1、體驗勾股定理的探索過程,會運用勾股定理解決簡單的問題。

(二)過程與方法

1、讓學生經歷用面積法探索勾股定理的過程,體會數形結合的思想,滲透觀察、歸納、猜想、驗證的數學方法,體驗從特殊到一般的邏輯推理過程。

(三)情感態度與價值觀

1、通過了解勾股定理的歷史,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

2、讓學生體驗自己努力得到結論的成就感,體驗數學充滿了探索和創造,感受數學之美,探究之趣。

重點:會用勾股定理求直角三角形的邊長

難點:勾股定理的探索過程

多媒體課件

6.1第一學時

教學活動

活動1

【導入】欣賞圖片,了解歷史

2002年在北京召開了第24屆國際數學家大會,它是最高水平的全球性數學科學學術會議,被譽為數學界的“奧運會”.這就是本屆大會的會徽的圖案.

(1)你見過這個圖案嗎?

(2)你聽說過“勾股定理”嗎?

學生活動:學生觀察圖片,發表見解。

資源準備:教師演示多媒體課件

設計意圖:從現實生活中提出“趙爽弦圖”,為學生能夠積極主動地投入到探索活動創設情境,激發學生學習熱情,同時為探索勾股定理提供背景材料。

活動2【講授】探索勾股定理

探究一:探索直角三角形三邊的特殊關系:

(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;

直角三角形1

直角邊一a=3

直角邊二b=4

斜邊c=?

猜想三邊關系滿足關系:

直角三角形2

直角邊一a=5

直角邊二b=?

斜邊c=13

猜想三邊關系滿足關系:

(2)猜想:直角三角形的三邊關系為

探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學交流:你是怎樣得到的?

思考:每個圖中正方形的面積與三角形的邊長有何關系?歸納得出勾股定理。

勾股定理:

直角三角形等于

幾何語言表述:

如圖,在rtδabc中,c=90°,則:

若bc=a,ac=b,ab=c,則上面的定理可以表示為:

學生活動:在獨立探究的基礎上,學生分組交流。

資源準備:教師演示多媒體課件

設計意圖:滲透從特殊到一般的數學思想。為學生提供參與數學活動的時間和空間,發揮學生的主體作用;培養學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。

活動3【講授】證明勾股定理

是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.到目前為止,對這個命題的證明方法已有幾百種之多.下面,我們就來看一看我國數學家趙爽是怎樣證明這個命題的。

(1)以直角三角形abc的兩條直角邊a、b為邊作兩個正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?

(2)面積分別怎樣表示?它們有什么關系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對邊

為a、b、c。求證:a2+b2=c2。

分析:

⑴讓學生準備多個三角形模型,最好是有顏色的吹塑紙,

讓學生拼擺不同的形狀,利用面積相等進行證明。

⑵拼成如圖所示,其等量關系為:

4s△+s小正=s大正

2ab+(b-a)2=c2

化簡可證

學生活動:學生在獨立思考的基礎上以小組為單位,動手拼接。

資源準備:教師演示多媒體課件

設計意圖:通過拼圖活動,調動學生思維的積極性,鍛煉學生的動手實踐能力,為學生提供從事數學活動的機會,建立初步的空間觀念,發展形象思維。通過對定理的證明,讓學生確信定理的正確性。

活動4【練習】簡單應用勾股定理解題

1、求下圖中字母所代表的正方形的面積

2、求出下列各圖中x的值。

3、如圖所示,強大的臺風使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?

4、如圖,點c是以ab為直徑的半圓上一點,∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?

學生活動:學生獨立思考完成

設計意圖:教師利用學生已有的知識創設問題情境,有針對性地引導學生進行練習,為學習勾股定理在實際生活中的應用做好鋪墊。

活動5【作業】總結反思,布置作業

1、本節課你有哪些收獲?

2、還有哪些疑問?

3、作業:略

學生活動:學生歸納、總結談感受

設計意圖:通過小結能為學生從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。

活動6【講授】板書設計

勾股定理

一、定理:如果直角三角形的兩直角邊長分別為a,b,

斜邊為c,那么

二、證明:略

三、應用:

活動7【作業】教學反思

本節課涉及了大量的有關勾股定理的背景知識,學生可以感受到勾股定理所蘊含的濃郁的數學文化。教學中應聆聽學生發言,尊重學生發展。積極引導學生深挖細究,體現過程方法。教學中應著力激發學生學習數學的興趣,也要注重自主探索與合作交流,同時還要注意數學思想方法的滲透,為學生今后的發展拓展了空間。

17.1勾股定理

課時設計課堂實錄

17.1勾股定理

1第一學時教學活動活動1【導入】欣賞圖片,了解歷史

2002年在北京召開了第24屆國際數學家大會,它是最高水平的全球性數學科學學術會議,被譽為數學界的“奧運會”.這就是本屆大會的會徽的圖案.

(1)你見過這個圖案嗎?

(2)你聽說過“勾股定理”嗎?

學生活動:學生觀察圖片,發表見解。

資源準備:教師演示多媒體課件

設計意圖:從現實生活中提出“趙爽弦圖”,為學生能夠積極主動地投入到探索活動創設情境,激發學生學習熱情,同時為探索勾股定理提供背景材料。

活動2【講授】探索勾股定理

探究一:探索直角三角形三邊的特殊關系:

(1)畫一直角三角形,使其兩邊滿足下面的條件,測量第三邊的長度,完成下表;

直角三角形1

直角邊一a=3

直角邊二b=4

斜邊c=?

猜想三邊關系滿足關系:

直角三角形2

直角邊一a=5

直角邊二b=?

斜邊c=13

猜想三邊關系滿足關系:

(2)猜想:直角三角形的三邊關系為

探究二:如果下圖中小方格的邊長是1,觀察圖形,完成下表,并與同學交流:你是怎樣得到的?

思考:每個圖中正方形的面積與三角形的邊長有何關系?歸納得出勾股定理。

勾股定理:

直角三角形等于

幾何語言表述:

如圖,在rtδabc中,c=90°,則:

若bc=a,ac=b,ab=c,則上面的定理可以表示為:

學生活動:在獨立探究的基礎上,學生分組交流。

資源準備:教師演示多媒體課件

設計意圖:滲透從特殊到一般的數學思想。為學生提供參與數學活動的時間和空間,發揮學生的主體作用;培養學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。

活動3【講授】證明勾股定理

是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.到目前為止,對這個命題的證明方法已有幾百種之多.下面,我們就來看一看我國數學家趙爽是怎樣證明這個命題的。

(1)以直角三角形abc的兩條直角邊a、b為邊作兩個正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?

(2)面積分別怎樣表示?它們有什么關系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對邊

為a、b、c。求證:a2+b2=c2。

分析:

⑴讓學生準備多個三角形模型,最好是有顏色的吹塑紙,

讓學生拼擺不同的形狀,利用面積相等進行證明。

⑵拼成如圖所示,其等量關系為:

4s△+s小正=s大正

2ab+(b-a)2=c2

化簡可證

學生活動:學生在獨立思考的基礎上以小組為單位,動手拼接。

資源準備:教師演示多媒體課件

設計意圖:通過拼圖活動,調動學生思維的積極性,鍛煉學生的動手實踐能力,為學生提供從事數學活動的機會,建立初步的空間觀念,發展形象思維。通過對定理的證明,讓學生確信定理的正確性。

活動4【練習】簡單應用勾股定理解題

1、求下圖中字母所代表的正方形的面積

2、求出下列各圖中x的值。

3、如圖所示,強大的臺風使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?

4、如圖,點c是以ab為直徑的半圓上一點,∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?

學生活動:學生獨立思考完成

設計意圖:教師利用學生已有的知識創設問題情境,有針對性地引導學生進行練習,為學習勾股定理在實際生活中的應用做好鋪墊。

活動5【作業】總結反思,布置作業

1、本節課你有哪些收獲?

2、還有哪些疑問?

3、作業:略

學生活動:學生歸納、總結談感受

設計意圖:通過小結能為學生從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。

活動6【講授】板書設計

勾股定理

一、定理:如果直角三角形的兩直角邊長分別為a,b,斜邊為c,那么

二、證明:略

三、應用:

活動7【作業】教學反思

本節課涉及了大量的有關勾股定理的背景知識,學生可以感受到勾股定理所蘊含的濃郁的數學文化。教學中應聆聽學生發言,尊重學生發展。積極引導學生深挖細究,體現過程方法。教學中應著力激發學生學習數學的興趣,也要注重自主探索與合作交流,同時還要注意數學思想方法的滲透,為學生今后的發展拓展了空間。

勾股定理說課稿10分鐘篇九

課題:勾股定理

內容:教材分析、教法學法分析、教學過程設計、設計說明

(一)教材所處的地位

這節課是華師大九年制義務教育課程標準實驗教科書八年級總第19章第2節探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)根據課程標準,本課的教學目標是:

1、能說出勾股定理的內容。

2、會初步運用勾股定理進行簡單的計算和實際運用。

3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。

4、通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

(三)本課的教學重點:探索勾股定理

本課的教學難點:以直角三角形為邊的正方形面積的計算。

教法分析:針對初二年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分。

學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

以畢達哥拉斯發現勾股定理引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發生過程,而且解決問題的過程也是一個“數學化”的過程。

1、投影課本圖的有關直角三角形問題,讓學生計算正方形a,b,c的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發現正方形a,b,c的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形c的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

3、給出一個邊長單位為5,12,13,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養學生運用數學語言進行抽象、概括的能力是有益的,同時發揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結論的正確性和廣泛性。這一過程有利于培養學生嚴謹、科學的學習態度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育和數學文化熏陶。

讓學生解決生活中的實際問題,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。

主要通過學生回憶本節課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。

習題19.2(1-5)

有興趣的同學可以查找另外的證明方法,寫出1-2種出來

1、本節課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的探索和研究,得出結論。這種一般化的思想方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發展也有一定的作用。

3、關于練習的設計,除兩個實際問題和課本習題以外,還讓有興趣的同學可以查找另外的證明方法,寫出1-2種出來

4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學數學、用數學的意識是有很大的裨益的。

勾股定理說課稿10分鐘篇十

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一。它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一。在實際生活中用途很大,教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,讓學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

教學重點:勾股定理的證明和應用。

教學難點:勾股定理的證明。

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發揮教師的主導作用;運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理。提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

(一)創設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

勾股定理說課稿10分鐘篇十一

(一)教材分析

本節內容選自人教版八年級數學下冊第17章第二節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判定定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法來證明幾何問題的思想,為將來學習解析幾何埋下了伏筆。

(二)教學目標

根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。

知識技能:

理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。

過程方法:

1、通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成的過程

2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合方法的應用

3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態度:

在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

(三)學情分析

盡管已到初二下學期的學生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構造法”證明勾股定理的逆定理學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,而勾股定理逆定理的應用是本節重點

重點:勾股定理逆定理的應用

難點:勾股定理逆定理的證明

數學課程不僅注重知識、技能,以及情感意識和創造力的培養,同樣注重社會實踐和體驗,教學要遵循以教師為主導,學生為主體的原則,因此我采用的教法學法如下:

在教學中以小組合作,自主探索為形式,采用“提問引導法”,通過“提出疑問”來啟發誘導學生,讓學生自覺主動地去分析問題、解決問題,學生在操作過程中不斷“發現問題——解決問題”,變學生“學會”為“會學”.這樣不僅使學生學習目標明確,而且能夠培養他們的合作精神和自主學習的能力。根據學法指導自主性和差異性原則,本節我主要采用自主探究學習法,通過設計一系列問題,引導學生主動探究新知,體現學習自主性,從不同層面發掘不同學生的不同能力。

1、多媒體教學課件

2、紙片、直尺、圓規等

3、對學生事先分組

根據本課教學內容以及數學課程學科特點,結合八年級學生的實際認知水平,我設計了如下六個教學環節:

(一)復習提問、引入新課

問題1:前面我們學習了勾股定理,你能說出它的題設和結論嗎?

問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?

(二)動手操作、觀察猜想

探究一:分組做實驗

第一組同學每人畫一個邊長為3cm、4 cm、5 cm的三角形;

第二組同學每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;

第三組同學每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;

第四組同學每人畫一個邊長為2 cm、5 cm、6 cm的三角形。

問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證

問題2:前三個三角形三邊具有怎樣的關系呢?

問題3:結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

學生活動:動手、觀察、測量、思考、猜想

設計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養學生動手操作能力和尋求解決數學問題的一般方法,又體驗了數與形的內在聯系。

(三)實踐驗證,歸納證明

教師出示問題

問題1:對于一個真命題,它的逆命題是否也為真?學生舉例說明。

勾股定理的逆命題是否也正確?怎么證明?

問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系,你是怎樣得到的?(出示紙片)

問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?

學生活動:觀察思考,動手操作,分組討論,交流合作(教師引導學生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)

設計意圖:把“構造直角三角形”這一方法的獲取過程交給學生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發現的愉悅,有效地突破本節的難點。

勾股定理說課稿10分鐘篇十二

尊敬的各位評委、老師,大家好!

我說課的題目是華師版八年級上冊第十四章第一節第一課時《勾股定理》。

如果說數學思想是解決數學問題的一首經典老歌,那么本節課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。

勾股定理的發現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節在教材中起著承前啟后的橋梁作用。

新課標下的數學教學不僅是知識的教學,更應注重能力的培養及情感的教育,因此,根據本節在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節教學目標如下:

1、探索并利用拼圖證明勾股定理。

2、利用勾股定理解決簡單的數學問題。

3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。

本著課標的要求,在吃透教材的基礎上,我確定本節的教學重點、難點、關鍵如下:

勾股定理的證明和簡單應用是本節的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。

為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:

新課程標準強調要從學生已有的經驗出發,最大限度的激發學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發展打下堅實的基礎。為了增大課堂容量、給學生創設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。

學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養學生的邏輯思維能力和語言表達能力。

為了充分調動學生的學習積極性,創設優化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。

以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環節來進行教學

1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。

2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。

3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。

4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節內容的鞏固與升華。

為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發揮學生的主體地位與教師主導作用相統一的原則。教學中注重學生的動手操作能力的培養,化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。

教學中我注重人文環境的創設,使數學課堂充滿親切、民主的氣氛,例如整節課我以學生的操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發了學生的學習興趣;為了使不同的學生得到不同的發展,人人學有價值的數學,在教學中我創造性的使用教材,在不改變例題的本意為前提,創設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。

以學生個性補充的形式促進課堂新的生成,最大限度的培養學生創新思維,使不同的人在數學上有不同的發展。本節課既做到了課程的開放,為充分發揮學生聰明智慧和創造性的思維提供了空間,又創設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統一,如小結時由“勾股樹”到“智慧樹”的希望寄語。

勾股定理說課稿10分鐘篇十三

在這一環節中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。

本環節要圍繞以下幾個活動展開:

1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

1a=3b=42a=5b=123a=2.5b=64a=6b=8

2、猜一猜,以下列線段長為三邊的三角形形狀

13cm4cm5cm25cm12cm13cm

32.5cm6cm6.5cm46cm8cm10cm

3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發現。

4、用恰當的語言敘述你的結論

在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發展區,面向不同層次的'每一名學生,每一名學生都有參與數學活動的機會,最后運用恰當的語言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;

1)學生的參與意識與動手能力。

2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數,后有形。

3)數形結合的思想方法及歸納能力。

八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。

1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?

2.△abc三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?

為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發現創造的愉悅,有效的突破了難點。

勾股定理說課稿10分鐘篇十四

各位專家領導,上午好:今天我說課的課題是《勾股定理》

(一)本節內容在全書和章節的地位

這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

(二)三維教學目標:

1.【知識與能力目標】

⒈理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

⒉通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

2. 【過程與方法目標】

在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

3.【情感態度與價值觀】

通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

(三)教學重點、難點:

【教學重點】

勾股定理的證明與運用

【教學難點】

用面積法等方法證明勾股定理

【難點成因】

對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

【突破措施】

⒈創設情景,激發思維:創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

⒉自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

⒊張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

【教法分析】

數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神?;镜慕虒W程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。

【學法分析】

新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

(一)創設情景

多媒體課件演示flash小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

(二)動手操作

⒈課件出示課本p99圖19.2.1:

觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現sp+sq=sr(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠c=90°,ac=bc時,則ac2+bc2=ab2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

⒉緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出p100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形p和q的面積,只是求正方形r的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

⒊再問:當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

(三)歸納驗證

【歸納】通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

【驗證】先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。

(四)問題解決

⒈讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

⒉自學課本p101例1,然后完成p102練習。

(五)課堂小結

1.小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

2.教師用多媒體介紹“勾股定理史話”

①《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。

②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

目的是對學生進行愛國主義教育,激勵學生奮發向上。

(六)布置作業

課本p104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

勾股定理說課稿10分鐘篇十五

本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發創造,優化課堂教學。努力做到有傳統的教學課堂像實驗課堂轉變,使學生真正成為學習的主人,培養了學生的素質能力,達到了良好的教學效果。

課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。

①初步感知定理:這一環節我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題,現在請同學觀察,看看有什么發現?(學案出示)使問題更形象、具體。

②提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。

④總結定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數量關系即勾股定理。

學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養,我設計了一組坡有難度的練習題。

本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

讓學生收集有關勾股定理的證明方法,下節課展示、交流。使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服