日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 最新三角函數課堂(4篇)

最新三角函數課堂(4篇)

格式:DOC 上傳日期:2023-03-02 18:45:01
最新三角函數課堂(4篇)
時間:2023-03-02 18:45:01     小編:zdfb

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發揮它最大的作用呢?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。

三角函數課堂篇一

(一)內容說明

函數是中學數學的重要內容,中學數學對函數的研究大致分成了三個階段。

三角函數是最具代表性的一種基本初等函數。4.8節是第二章《函數》學習的延伸,也是第四章《三角函數》的核心內容,是在前面已經學習過正、余弦函數的圖象、三角函數的有關概念和公式基礎上進行的,其知識和方法將為后續內容的學習打下基礎,有承上啟下的作用。

本節課是數形結合思想方法的良好素材。數形結合是數學研究中的重要思想方法和解題方法。

著名數學家華羅庚先生的詩句:......數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休......可以說精辟地道出了數形結合的重要性。

本節通過對數形結合的進一步認識,可以改進學習方法,增強學習數學的自信心和興趣。另外,三角函數的曲線性質也體現了數學的對稱之美、和諧之美。

因此,本節課在教材中的知識作用和思想地位是相當重要的。

(二)課時安排

4.8節教材安排為4課時,我計劃用5課時

(三)目標和重、難點

1.教學目標

教學目標的確定,考慮了以下幾點:

(1)高一學生有一定的抽象思維能力,而形象思維在學習中占有不可替代的地位,所以本節要緊緊抓住數形結合方法進行探索;

(2)本班學生對數學科特別是函數內容的學習有畏難情緒,所以在內容上要降低深難度。

(3)學會方法比獲得知識更重要,本節課著眼于新知識的探索過程與方法,鞏固應用主要放在后面的三節課進行。

由此,我確定了以下三個層面的教學目標:

(1)知識層面:結合正弦曲線、余弦曲線,師生共同探索發現正(余)弦函數的性質,讓學生學會正確表述正、余函數的單調性和對稱性,理解體會周期函數性質的研究過程和數形結合的研究方法;

(2)能力層面:通過在教師引導下探索新知的過程,培養學生觀察、分析、歸納的自學能力,為學生學習的可持續發展打下基礎;

(3)情感層面:通過運用數形結合思想方法,讓學生體會(數學)問題從抽象到形象的轉化過程,體會數學之美,從而激發學習數學的信心和興趣。

2. 重、難點

由以上教學目標可知,本節重點是師生共同探索,正、余函數的性質,在探索中體會數形結合思想方法。

難點是:函數周期定義、正弦函數的單調區間和對稱性的理解。

為什么這樣確定呢?

因為周期概念是學生第一次接觸,理解上易錯;單調區間從圖上容易看出,但用一個區間形式表示出來,學生感到困難。

如何克服難點呢?

其一,抓住周期函數定義中的關鍵字眼,舉反例說明;

其二,利用函數的周期性規律,抓住“橫向距離”和“k∈z"的含義,充分結合圖象來理解單調性和對稱性

(一)教法說明 教法的確定基于如下考慮:

(1)心理學的研究表明:只有內化的東西才能充分外顯,只有學生自己獲取的知識,他才能靈活應用,所以要注重學生的自主探索。

(2)本節目的是讓學生學會如何探索、理解正、余弦函數的性質。教師始終要注意的是引導學生探索,而不是自己探索、學生觀看,所以教師要引導,而且只能引導不能代辦,否則不但沒有教給學習方法,而且會讓學生產生依賴和倦怠。

(3)本節內容屬于本源性知識,一般采用觀察、實驗、歸納、總結為主的方法,以培養學生自學能力。

所以,根據以人為本,以學定教的原則,我采取以問題為解決為中心、啟發為主的教學方法,形成教師點撥引導、學生積極參與、師生共同探討的課堂結構形式,營造一種民主和諧的課堂氛圍。

(二) 教學手段說明:

為完成本節課的教學目標,突出重點、克服難點,我采取了以下三個教學手段:

(1)精心設計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發現。

(2)為便于課堂操作和知識條理化,事先制作正弦函數、余弦函數性質表,讓學生當堂完成表格的填寫;

(3)為節省課堂時間,制作幻燈片演示正、余弦函數圖象和性質,也可以使教學更生動形象和連貫。

我發現,許多學生的學習方法是:直接記住函數性質,在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。

本節的學習方法對后續內容的學習具有指導意義。為了培養學法,充分關注學生的可持續發展,教師要轉換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數形結合的研究方法,體驗周期函數的研究思路;幫助學生實現知識的意義建構,幫助學生發現和總結學習方法,使教師成為學生學習的'高級合作伙伴。

教師要做到:

授之以漁,與之合作而漁,使學生享受漁之樂趣。 因此

1.本節要教給學生看圖象、找規律、思考提問、交流協作、探索歸納的學習方法。

2.通過本課的探索過程,培養學生觀察、分析、交流、合作、類比、歸納的學習能力及數形結合(看圖說話)的意識和能力。

指導思想是:兩條線索、三大特點、四個環節

(一)導入

引出數形結合思想方法,強調其含義和重要性,告訴學生,本節課將利用數形結合方法來研究,會使學習變得輕松有趣。

采用這樣的引入方法,目的是打消學生對函數學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。

(二)新知探索 主要環節,分為兩個部分

教學過程如下:

第一部分————師生共同研究得出正弦函數的性質

1.定義域、值域 2.周期性

3.單調性 (重難點內容)

為了突出重點、克服難點,采用以下手段和方法:

(1)利用多媒體動態演示函數性質,充分體現數形結合的重要作用;

(2)以層層深入,環環相扣的課堂提問,啟發學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調動起來。

(3)單調區間的探索過程是:

先在靠近原點的一個單調周期內找出正弦函數的一個增區間,由此表示出所有的增區間,體現從特殊到一般的知識認識過程。

** 教師結合圖象幫助學生理解并強調 “距離”(“長度”)是周期的多少倍

為什么要這樣強調呢?

因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數的相關性質。

4.對稱性

設計意圖:

(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現了從一般到特殊的知識再現過程。

(2)從正弦函數的對稱性看到了數學的對稱之美、和諧之美,體現了數學的審美功能。

5.最值點和零值點

有了對稱性的理解,容易得出此性質。

第二部分————學習任務轉移給學生

設計意圖:

(1)通過把學習任務轉移給學生,激發學生的主體意識和成就動機,利于學生作自我評價;

(2)通過學生自主探索,給予學生解決問題的自主權,促進生生交流,利于教師作反饋評價;

(3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。

(三)鞏固練習

補充和選作題體現了課堂要求的差異性。

(四)結課

1.板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現方式來編排板書。即體現系統性、程序性、概括性、指導性、啟發性、創造性的原則;(原則性)

2.使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。(靈活性)

(一)知識診斷

(二)評價說明

1.針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調動。

2. 根據課堂上師生的雙邊活動,作出適時調整、補充(反饋評價);根據學生課后作業、提問等情況,反復修改并指導下節課的設計(反復評價)。

3. 本節課充分體現了面向全體學生、以問題解決為中心、注重知識的建構過程與方法、重視學生思想與情感的設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結構改革。

通過這樣的探索過程,相信學生能從中有所體會,對后續內容的學習和學生的可持續發展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結果。

三角函數課堂篇二

1.任意角

(1)角的概念的推廣:

(2)終邊相同的角:

2.弧度制:

弧度與角度的換算:

3.弧長公式:扇形的面積公式:

4.任意角的三角函數

(1)任意角的三角函數定義

(2)三角函數在各象限內符號口訣是 .

5.三角函數線

1. 度.

2. 是第 象限角.

3.在 上與 終邊相同的角是 .

4.角 的終邊過點 ,則 .

5.已知扇形的周長是6 ,面積是2 ,則扇形的圓心角的弧度數是 .

6.若 且 則角 是第 象限角.

【例1】填空題:

(1)若 則 為第 象限角.

(2)已知 是第三象限角,則 是第 象限角.

(3)角 的`終邊與單位圓(圓心在原點,半徑為 的圓)交于第二象限的點 ,則 .

(4)函數 的值域為_____ _________.

【例2】(1)已知角 的終邊經過點 且 ,求 的值;

(2) 為第二象限角, 為其終邊上一點,且 求 的值.

【例3】已知一扇形的中心角是 ,所在圓的半徑是 .

(1)若 求扇形的弧長及該弧所在的弓形面積;

(2)若扇形的周長是一定值 ,當 為多少弧度時,該扇形有最大面積.

課堂小結

1.角 是第四象限角,則 是第 象限角.

2.若 ,則角 的終邊在第 象限.

3.已知角 的終邊上一點 ,則 .

4.已知圓 的周長為 , 是圓上兩點,弧 長為 ,則 弧度.

5.若角 的終邊上有一點 則 的值為 .

6.已知點 落在角 的終邊上,且 ,則 的值為 .

7.有下列各式:① ② ③ ④ ,其中為負值的序號為

8.在平面直角坐標系 中,以 軸為始邊作銳角 ,它們的終邊分別與單位圓相交于 兩點,已知 兩點的橫坐標分別為 ,則 .

9.若一扇形的周長為 ,則當扇形的圓心角 等于多少弧度時,這個扇形的面積最大?最大值是多少?

的正弦、余弦和正切值.

三角函數課堂篇三

1.知識與技能

(1)能夠借助三角函數的定義及單位圓中的三角函數線推導三角函數的誘導公式。

(2)能夠運用誘導公式,把任意角的三角函數的化簡、求值問題轉化為銳角三角函數的化簡、求值問題。

2.過程與方法

(1)經歷由幾何直觀探討數量關系式的過程,培養學生數學發現能力和概括能力。

(2)通過對誘導公式的探求和運用,培養化歸能力,提高學生分析問題和解決問題的能力。

3.情感、態度、價值觀

(1)通過對誘導公式的探求,培養學生的探索能力、鉆研精神和科學態度。

(2)在誘導公式的探求過程中,運用合作學習的方式進行,培養學生團結協作的精神。

教學重點:探求π-a的誘導公式。π+a與-a的誘導公式在小結π-a的誘導公式發現過程的基礎上,教師引導學生推出。

教學難點:π+a,-a與角a終邊位置的幾何關系,發現由終邊位置關系導致(與單位圓交點)的坐標關系,運用任意角三角函數的定義導出誘導公式的“研究路線圖”。

問題教學法、合作學習法,結合多媒體課件

角的概念已經由銳角擴充到了任意角,前面已經學習過任意角的`三角函數,那么任意角的三角函數值怎么求呢?先看一個具體的問題。

(一)問題提出

如何將任意角三角函數求值問題轉化為0°~360°角三角函數求值問題。

【問題1】求390°角的正弦、余弦值、一般地,由三角函數的定義可以知道,終邊相同的角的同一三角函數值相等,三角函數看重的就是終邊位置關系。即有:sin(a+k·360°)=sinα,

cos(a+k·360°)=cosα,(k∈z)tan(a+k·360°)=tanα。

這組公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈z)(公式如何利用對稱推導出角π-a與角a的三角函數之間的關系。

由上一組公式,我們知道,終邊相同的角的同一三角函數值一定相等。反過來呢?如果兩個角的三角函數值相等,它們的終邊一定相同嗎?比如說:

【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?

角π-a與角a的終邊關于y軸對稱,有sin(π-a)=sina,

cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。

〖思考〗請大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?因為與角a終邊關于y軸對稱是角π-a,,利用這種對稱關系,得到它們的終邊與單位圓的交點的縱坐標相等,橫坐標互為相反數。于是,我們就得到了角π-a與角a的三角函數值之間的關系:正弦值相等,余弦值互為相反數,進而,就得到我們研究三角函數誘導公式的路線圖:角間關系→對稱關系→坐標關系→三角函數值間關系。

(三)自主探究

如何利用對稱推導出π+a,-a與a的三角函數值之間的關系。

剛才我們利用單位圓,得到了終邊關于y軸對稱的角π-a與角a的三角函數值之間的關系,下面我們還可以研究什么呢?

【問題3】兩個角的終邊關于x軸對稱,你有什么結論?兩個角的終邊關于原點對稱呢?

角-a與角a的終邊關于x軸對稱,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。

角π+a與角a終邊關于原點o對稱,有:sin(π+a)=-sina,

cos(π+a)=-cosa,(公式四)tan(π+a)=tana。

上面的公式一~四都稱為三角函數的誘導公式。

(四)簡單應用

例求下列各三角函數值:

(1)sinp;(2)cos(-60°);(3)tan(-855°)(五)回顧反思

【問題4】回顧一下,我們是怎樣獲得誘導公式的?研究的過程中,你有哪些體會?知識上,學會了四組誘導公式;思想方法層面:誘導公式體現了由未知轉化為已知的化歸思想;誘導公式所揭示的是終邊具有某種對稱關系的兩個角三角函數之間的關系。主要體現了化歸和數形結合的數學思想。具體可以表示如下:

(六)分層作業

1、閱讀課本,體會三角函數誘導公式推導過程中的思想方法;2、必做題課本23頁133、選做題

(1)你能由公式二、三、四中的任意兩組公式推導到另外一組公式嗎?

(2)角α和角β的終邊還有哪些特殊的位置關系,你能探究出它們的三角函數值之間的關系嗎?

三角函數課堂篇四

(1)能夠借助三角函數的定義及單位圓中的三角函數線推導三角函數的誘導公式。

(2)能夠運用誘導公式,把任意角的三角函數的化簡、求值問題轉化為銳角三角函數的化簡、求值問題。

(1)經歷由幾何直觀探討數量關系式的過程,培養學生數學發現能力和概括能力。

(2)通過對誘導公式的探求和運用,培養化歸能力,提高學生分析問題和解決問題的能力。

(1)通過對誘導公式的探求,培養學生的探索能力、鉆研精神和科學態度。

(2)在誘導公式的探求過程中,運用合作學習的方式進行,培養學生團結協作的精神。

教學重點:探求π-a的誘導公式。π+a與-a的誘導公式在小結π-a的誘導公式發現過程的基礎上,教師引導學生推出。

教學難點:π+a,-a與角a終邊位置的幾何關系,發現由終邊位置關系導致(與單位圓交點)的坐標關系,運用任意角三角函數的定義導出誘導公式的“研究路線圖”。

問題教學法、合作學習法,結合多媒體課件

角的概念已經由銳角擴充到了任意角,前面已經學習過任意角的三角函數,那么任意角的三角函數值怎么求呢?先看一個具體的問題。

如何將任意角三角函數求值問題轉化為0°~360°角三角函數求值問題。

【問題1】求390°角的正弦、余弦值.

一般地,由三角函數的定義可以知道,終邊相同的角的同一三角函數值相等,三角函數看重的.就是終邊位置關系。即有:sin(a+k·360°) = sinα,

cos(a+k·360°) = cosα, (k∈z)

tan(a+k·360°) = tanα。

這組公式用弧度制可以表示成sin(a+2kπ) = sinα,

cos(a+2kπ) = cosα, (k∈z) (公式一)

tan(a+2kπ) = tanα。

如何利用對稱推導出角π-a與角a的三角函數之間的關系。

由上一組公式,我們知道,終邊相同的角的同一三角函數值一定相等。反過來呢?如果兩個角的三角函數值相等,它們的終邊一定相同嗎?比如說:

【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?

角π-a與角a的終邊關于y軸對稱,有

sin(π-a) = sina,

cos(π-a) =-cosa,(公式二)

tan(π-a) =-tana。

〖思考〗請大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?

因為與角a終邊關于y軸對稱是角π-a,,利用這種對稱關系,得到它們的終邊與單位圓的交點的縱坐標相等,橫坐標互為相反數。于是,我們就得到了角π-a與角a的三角函數值之間的關系:正弦值相等,余弦值互為相反數,進而,就得到我們研究三角函數誘導公式的路線圖:角間關系→對稱關系→坐標關系→三角函數值間關系。

如何利用對稱推導出π+a,-a與a的三角函數值之間的關系。

剛才我們利用單位圓,得到了終邊關于y軸對稱的角π-a與角a的三角函數值之間的關系,下面我們還可以研究什么呢?

【問題3】兩個角的終邊關于x軸對稱,你有什么結論?兩個角的終邊關于原點對稱呢?

角-a與角a的終邊關于x軸對稱,有:

sin(-a) =-sina,

cos(-a) = cosa,(公式三)

tan(-a) =-tana。

角π+a與角a終邊關于原點o對稱,有:

sin(π +a) =-sina,

cos(π +a) =-cosa,(公式四)

tan(π +a) = tana。

上面的公式一~四都稱為三角函數的誘導公式。

例求下列各三角函數值:

(1) sinp; (2) cos(-60°);(3)tan(-855°)

【問題4】回顧一下,我們是怎樣獲得誘導公式的?研究的過程中,你有哪些體會?

知識上,學會了四組誘導公式;思想方法層面:誘導公式體現了由未知轉化為已知的化歸思想;誘導公式所揭示的是終邊具有某種對稱關系的兩個角三角函數之間的關系。主要體現了化歸和數形結合的數學思想。具體可以表示如下:

1、閱讀課本,體會三角函數誘導公式推導過程中的思想方法;

2、必做題 課本23頁13

3、選做題

(1)你能由公式二、三、四中的任意兩組公式推導到另外一組公式嗎?

(2)角α和角β的終邊還有哪些特殊的位置關系,你能探究出它們的三角函數值之間的關系嗎?

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服