總結是對過去一段時間中的收獲和經驗的總結和總結。在寫總結之前,我們需要對所要總結的內容進行全面的了解和梳理。在這里,我整理了一些精選的總結范文,供大家參考學習。
小學數學知識歸納與總結篇一
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理。
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3:相似三角形的概念。
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義。
考點4:相似三角形的判定和性質及其應用。
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用。
考點5:三角形的重心。
考核要求:知道重心的定義并初步應用。
考點6:向量的有關概念。
考點7:向量的加法、減法、實數與向量相乘、向量的線性運算。
考核要求:掌握實數與向量相乘、向量的線性運算。
考點8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考點9:解直角三角形及其應用。
考核要求:(1)理解解直角三角形的意義;(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數。
考核要求:(1)通過實例認識變量、自變量、因變量,知道函數以及函數的定義域、函數值等概念;(2)知道常值函數;(3)知道函數的表示方法,知道符號的意義。
考點11:用待定系數法求二次函數的解析式。
考核要求:(1)掌握求函數解析式的方法;(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點12:畫二次函數的圖像。
考核要求:(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;(2)理解二次函數的圖像,體會數形結合思想;(3)會畫二次函數的大致圖像。
考點13:二次函數的圖像及其基本性質。
考核要求:(1)借助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;(2)會用配方法求二次函數的頂點坐標,并說出二次函數的有關性質。
注意:(1)解題時要數形結合;(2)二次函數的平移要化成頂點式。
考點14:圓心角、弦、弦心距的概念。
考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷。
考點15:圓心角、弧、弦、弦心距之間的關系。
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點16:垂徑定理及其推論。
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17:直線與圓、圓與圓的位置關系及其相應的數量關系。
直線與圓的位置關系可從與之間的關系和交點的.個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點18:正多邊形的有關概念和基本性質。
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
考點19:畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點20:確定事件和隨機事件。
考核要求:(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21:事件發生的可能性大小,事件的概率。
考核要求:(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小并排出大小順序;(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。注意:(1)在給可能性的大小排序前可先用"一定發生"、"很有可能發生"、"可能發生"、"不太可能發生"、"一定不會發生"等詞語來表述事件發生的可能性的大小;(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點22:等可能試驗中事件的概率問題及概率計算。
本考點的考核要求是(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;(2)會用枚舉法或畫"樹形圖"方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
在求解概率問題中要注意:(1)計算前要先確定是否為可能事件;(2)用枚舉法或畫"樹形圖"方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點23:數據整理與統計圖表。
本考點考核要求是:(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,并能通過圖表獲取有關信息。
考點24:統計的含義。
本考點的考核要求是:(1)知道統計的意義和一般研究過程;(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點25:平均數、加權平均數的概念和計算。
本考點的考核要是:(1)理解平均數、加權平均數的概念;(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點26:中位數、眾數、方差、標準差的概念和計算。
考核要求:(1)知道中位數、眾數、方差、標準差的概念;(2)會求一組數據的中位數、眾數、方差、標準差,并能用于解決簡單的統計問題。
注意:當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;(2)求中位數之前必須先將數據排序。
考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖。
考核要求:(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;(2)會畫頻數分布直方圖和頻率分布直方圖,并能用于解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1。
考點28:中位數、眾數、方差、標準差、頻數、頻率的應用。
本考點的考核要是:(1)了解基本統計量(平均數、眾數、中位數、方差、標準差、頻數、頻率)的意計算及其應用,并掌握其概念和計算方法;(2)正確理解樣本數據的特征和數據的代表,能根據計算結果作出判斷和預測;(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然后作出合理的解決。
小學數學知識歸納與總結篇二
1、求教與自學相結合,在學習過程中,既要爭取教師的指導和幫助,但是又不能處處依靠教師。必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。
2、學用結合,勤于實踐,在學習過程中,要準確地掌握抽象概念的本質含義。了解從實際模型中抽象為理論的演變過程;對所學理論知識,要在更大范圍內尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用于實踐。
3、學習與思考相結合,在學習過程中,對課本的內容要認真研究,提出疑問,追本窮源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果,內在聯系,以及蘊含于推導過程中的數學思想和方法。
4、博觀約取,由博返約,課本是學生獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本外,還要閱讀有關的課外資料,來擴大知識領域。
5、及時復習,增強記憶。課堂上學習的內容,必須當天消化,要先復習,后做練習。復習工作必須經常進行,每一單元結束后,應將所學知識進行概括整理,使之系統化、深刻化。
6、學習中的總結和評價,是學習的繼續和提高,它有利于知識體系的建立、解題規律的掌握、學習方法和態度的調整和評判能力的提高。在學習過程中,應注意總結聽課、閱讀和解題中的收獲和體會。
小學數學知識歸納與總結篇三
(1)兩位數加、減兩位數。?兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。?乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有余數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。?數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。?加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。?先乘除后加減。兩步計算式題。小括號。
(二)量與計量。
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識。
(三)幾何初步知識。
直線和線段的初步認識。?角的初步認識。直角。
(四)應用題。
加法和減法一步計算的應用題。?乘法和除法一步計算的應用題。?比較容易的兩步計算的應用題。
(五)實踐活動。
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
小學數學知識歸納與總結篇四
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5 點和圓的位置關系
點在圓外
點在圓上 d=r
點在圓內 d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的`三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系
相交 d
相切 d=r
相離 dr
切線的性質定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7 圓和圓的位置關系
外離 dr+r
外切 d=r+r
相交 r-r
內切 d=r-r
內含 d
8 正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9 弧長和扇形面積
弧長
扇形面積:
10 圓錐的側面積和全面積
側面積:
全面積
11 (附加)相交弦定理、切割線定理
第五章 概率初步
1 概率意義:在大量重復試驗中,事件a發生的頻率 穩定在某個常數p附近,則常數p叫做事件a的概率。
2 用列舉法求概率
3 用頻率去估計概率
小學數學知識歸納與總結篇五
(1)億以內數的讀法和寫法。
計數單位“十萬”、“百萬”、“千萬”。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便算法。
_乘、除計算的簡單估算。
乘數接近整十、整百的簡便算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括號。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有余數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值。
加法和減法。加法運算定律推廣到小數。
(注:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。
(二)量與計量。
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
(三)幾何初步知識。
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。
三角形的特征。_三角形的內角和。
(四)統計初步知識。
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
(五)應用題列綜合算式解答比較容易的三步計算的應用題。
小學數學知識歸納與總結篇六
(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。
(2)分數四則混合運算。分數四則混合運算。
(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。
(二)比和比例。
比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。
(三)幾何初步知識。
圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。
(四)統計初步知識。
統計表。條形統計圖,折線統計圖,_扇形統計圖。
(五)應用題。
分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。
(六)實踐活動。
聯系學生所接觸到的社會情況組織活動。例如就家中的臥室,畫一個平面圖。
(七)整理和復習。
小學數學知識歸納與總結篇七
(1)20以內數的認識。加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。
(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
(二)量與計量鐘面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識。
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題。
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)。
(五)實踐活動。
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
小學數學知識歸納與總結篇八
0.2表示十分之二,0.02表示百分之二。
【小數的計數單位】小數的計數單位是十分之一,百分之一,千分之一......分別寫作0.1,0.01,0.001......
【小數加法】小數加法的意義與整數加法的意義相同,是把兩個數合并成一個數的運算。
【小數減法】小數減法的意義與整數減法的意義相同,是已知2個加數的和與其中一個加數,求另一個加數的運算。
【小數乘整數】小數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
【一個數乘小數】一個數乘小數的意義是求這個數的十分之幾,百分之幾,千分之幾......
【小數除法】小數除法的意義和整數除法的意義相同,是已知兩個因數的積與其中一個因數,求另一個因數的運算。
【循環小數】一個小數,從小數部分的某一位起,一個數字或者幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
【循環節】一個循環小數的小數部分,依次不斷地重復出現的數字,叫做這個循環小數的循環節。
【純循環小數】循環節從小數部分第一位開始的,叫做純循環小數。
【混循環小數】循環節不從小數部分第一位開始的,叫做混循環小數。
【有限小數】小數部分的位數是有限的小數,叫做有限小數。
【無限小數】小數部分的位數是無限的小數,叫做無限小數。循環小數是無限小數。
【小數的性質】小數的末尾添上0或者去掉0,小數的大小不變,這叫做小數的性質。
【小數加減法的計算法則】計算小數加減法,先把各數的小數點對起,再按照整數加減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。得數的小數部分末尾有0,一般要把0去掉。
【小數乘法的計算法則】計算小數乘法,先按照整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊數出幾位,點上小數點。
【除數是整數的小數除法法則】除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添0再繼續除。
【除數是小數的小數除法法則】除數是小數的除法,先移動除數的小數點,使它變整數;除數的小數點向右移動幾位,被除數的小數點也向右移動幾位(位數不夠的,在被除數的末尾用“0”補足);然后按照除數是整數的小數除法進行計算。
【小數的讀法】讀小數的時候,整數部分按照整數的讀法來讀,(整數部分是“0”的讀作“零”),小數點讀作“點”,小數部分通常順次讀出每一個數位上的數字。
【小數的寫法】寫小數的時候,整數部分按照整數的寫法來寫(整數部分是零的寫做數字“0”),小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
【小數性質的應用】(1)根據小數的性質,遇到小數末尾有“0”的時候,一般地可以去掉末尾“0”,把小數化簡。(2)有時根據需要,可以在小數的末尾添上“0”,還可以在整數的個位和右下角點上小數點,再添上0,把整數寫成小數形式。
小學數學知識歸納與總結篇九
復數是高中代數的重要內容,在高考試題中約占8%-10%,一般的出一道基礎題和一道中檔題,經常與三角、解析幾何、方程、不等式等知識綜合。本章主要內容是復數的概念,復數的代數、幾何、三角表示方法以及復數的運算.方程、方程組,數形結合,分域討論,等價轉化的數學思想與方法在本章中有突出的體現.而復數是代數,三角,解析幾何知識,相互轉化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強。
在本章學習結束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數形式的方程、復數集中的數列等邊緣性的知識還有待于進一步的研究。
(1)復數的向量表示法的運算.對于復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難。對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明。
(2)復數三角形式的乘方和開方。有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練。
(3)復數的輻角主值的求法。
(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會。
小學數學知識歸納與總結篇十
(2)指數函數的值域為大于0的實數集合。
(3)函數圖形都是下凹的。
(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于y軸與x軸的正半軸的單調遞減函數的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數總是通過(0,1)這點。
(8)顯然指數函數無界。
奇偶性。
定義。
一般地,對于函數f(x)。
(1)如果對于函數定義域內的任意一個x,都有f(—x)=—f(x),那么函數f(x)就叫做奇函數。
(2)如果對于函數定義域內的任意一個x,都有f(—x)=f(x),那么函數f(x)就叫做偶函數。
(3)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。
(4)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。
小學數學知識歸納與總結篇十一
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規作業或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。可以把每條定理、每道例題都當作習題,認真地重證、重解,并適當加些批注,特別是通過對典型例題的講解分析,最后要抽象出解決這類問題的數學思想和方法,并做好書面的解題后的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,學生要盡可能獨立解題,因為求解過程,也是培養分析問題和解決問題能力的一個過程,同時更是一個研究過程。
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鐘課堂效益。
其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前后知識的聯系等,只有把握住教材,才能掌握學習的主動。
最后,在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學習要經常總結規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業,寫好每個單元的總結)的學習習慣。
小學數學知識歸納與總結篇十二
2、從個位加起;。
3、個位滿10向十位進1。
(2)筆算兩位數減法,要記三條。
2、從個位減起;。
3、個位不夠減從十位退1,在個位加10再減。
(3)混合運算計算法則。
1、在沒有括號的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;。
2、在沒有括號的算式里,有乘除法和加減法的,要先算乘除再算加減;。
3、算式里有括號的要先算括號里面的。
(4)四位數的讀法。
轉載自 www.tb8k.com
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;。
2、中間有一個0或兩個0只讀一個“零”;。
3、末位不管有幾個0都不讀。
(5)四位數寫法。
1、從高位起,按照順序寫;。
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫“0”。
(6)四位數減法也要注意三條。
2、從個位減起;。
3、哪一位數不夠減,從前位退1,在本位加10再減。
(7)一位數乘多位數乘法法則。
1、從個位起,用一位數依次乘多位數中的每一位數;。
2、哪一位上乘得的積滿幾十就向前進幾。
(8)除數是一位數的除法法則。
2、除數除到哪一位,就把商寫在那一位上面;。
3、每求出一位商,余下的數必須比除數小。
(9)一個因數是兩位數的乘法法則。
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;。
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;。
3、然后把兩次乘得的數加起來。
(10)除數是兩位數的除法法則。
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;。
3、每求出一位商,余下的數必須比除數小。
(11)萬級數的讀法法則。
1、先讀萬級,再讀個級;。
2、萬級的數要按個級的讀法來讀,再在后面加上一個“萬”字;。
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個“零”。
(12)多位數的讀法法則。
1、從高位起,一級一級往下讀;。
2、讀億級或萬級時,要按照個級數的讀法來讀,再往后面加上“億”或“萬”字;。
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(13)小數大小的比較。
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(14)小數加減法計算法則。
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最后在得數里對齊橫線上的小數點位置,點上小數點。
(15)小數乘法的計算法則。
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(16)除數是整數除法的法則。
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有余數,就在余數后面添0再繼續除。
(17)除數是小數的除法運算法則。
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然后按照除數是整數的小數除法進行計算。
(18)解答應用題步驟。
2、確定每一步該怎樣算,列出算式,算出得數;。
3、進行檢驗,寫出答案。
(19)列方程解應用題的一般步驟。
1、弄清題意,找出未知數,并用x表示;。
2、找出應用題中數量之間的相等關系,列方程;。
3、解方程;。
4、檢驗、寫出答案。
(20)同分母分數加減的法則。
同分母分數相加減,分母不變,只把分子相加減。
(21)同分母帶分數加減的法則。
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合并起來。
(22)異分母分數加減的法則。
異分母分數相加減,先通分,然后按照同分母分數加減的法則進行計算。
(23)分數乘以整數的計算法則。
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(24)分數乘以分數的計算法則。
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(25)一個數除以分數的計算法則。
一個數除以分數,等于這個數乘以除數的倒數。
(26)把小數化成百分數和把百分數化成小數的方法。
把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號;。
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(27)把分數化成百分數和把百分數化成分數的方法。
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
小學數學知識歸納與總結篇十三
高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節,主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。
這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復事件發生的概率。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
小學數學知識歸納與總結篇十四
【知識點】:
1、為學生創設具體的數學情境,通過描一描樹葉的邊線,摸一摸課桌數學書的邊線,再量一量自己的腰圍和頭圍,從而知道了一個圖形一周的長度就是這個圖形的周長。
2、學生在動手操作中,可以畫出并能計算出圖形的周長。
【知識點】:
1、為學生創設游園的情境,引導學生體驗用不同的方法去計算小公園的周長。就是把圍成小公園的所有線段加在一起。
2、算一算中出現了4種不同的圖形,鼓勵學生用多種方法計算,為后面學習長方形、正方形周長的計算作好鋪墊。
【知識點】:
1、學生要明確已知的條件和問題,然后先獨立思考,再在小組中交流自己的想法,鼓勵學生用不同的方法來解決問題,從而發現(長+寬)﹡2是求長方形周長最簡便的方法。不必用公式化的算式去約束學生,他們可以自己喜歡的方法去計算。
2、在做一做中出現的兩個不同的長方形可以讓學生用自己喜歡的方法求周長。
【知識點】:
1、學生要明確已知條件和問題,利用學習長方形周長的知識經驗,知識遷移到怎樣求出正方形的周長,就是把正方形的四條邊長加起來,還可以用邊長乘4。
2、做一做中出現的兩個正方形周長的計算,可以放手讓學生用自己喜歡的方法去解決。
3、練一練中的第2小題要讓學生明確求籬笆長多少米,就是在求正方形實驗園地的周長。
【知識點】:
1、練習六中的1——8小題通過計算各種圖形的不同周長,進一步鞏固學生已經掌握的計算周長的方法。
而第9小題則是讓學生發現圖形之間的變化關系,從而發現這四幅圖形的周長是相等的。
2、在實踐活動中,可以讓學生先計算三個周長的大小,并說出估計的過程或理由,然后再讓學生自主選擇測量工具和測量方式。可以獨立測量,也可以是小組合作進行,最后組織學生對其估計和測量的結果進行對比,修正自己的估計和測量的結果。
【知識點】:
在這節實踐活動課中,要引導學生認真仔細的觀察圖片中的數學信息,從而運用周長、乘除法、搭配方法等數學知識和方法來解決實際生活中的簡單問題。
小學數學知識歸納與總結篇十五
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
3、整數指數冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數。
1、反比例函數的表達式、圖像、性質。
圖像:雙曲線。
表達式:y=k/x(k不為0)。
性質:兩支的增減性相同;。
2、反比例函數在實際問題中的應用。
第三章勾股定理。
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方。
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形。
1、平行四邊形。
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;。
兩組對角分別相等的四邊形是平行四邊形;。
對角線互相平分的四邊形是平行四邊形;。
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形。
(1)矩形。
性質:矩形的四個角都是直角;。
矩形的對角線相等;。
矩形具有平行四邊形的所有性質。
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;。
推論:直角三角形斜邊的中線等于斜邊的一半。
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析。
加權平均數、中位數、眾數、極差、方差。
小學數學知識歸納與總結篇十六
為了教和學的同步,教師應要求學生在課堂上集中思想,專心聽老師講課,認真聽同學發言,抓住重點、難點、疑點聽,邊聽邊思考,對中、高年級學生提倡邊聽邊做聽課筆記。
積極思考老師和同學提出的問題,使自己始終置身于教學活動之中,這是提高學習質量和效率的重要保證。學生思考、回答問題一般要求達到:有根據、有條理、符合邏輯。隨著年齡的升高,思考問題時應逐步滲透聯想、假設、轉化等數學思想,不斷提高思考問題的質量和速度。
審題能力是學生多種能力的綜合表現。教師應要求學生仔細閱讀教材內容,學會抓住字眼,正確理解內容,對提示語、旁注、公式、法則、定律、圖示等關鍵性內容更要認真推敲、反復琢磨,準確把握每個知識點的內涵與外延。建議教師們經常進行“一字之差義差萬”的專項訓練,不斷增強學生思維的深刻性和批判性。
練習是教學活動的重要組成部分和自然延續,是學生最基本、最經常的獨立學習實踐活動,還是反映學生學習情況的主要方式。教師應教育學生對知識的理解不盲從優生看法,不受他人影響輕易改變自己的見解;對知識的運用不抄襲他人現成答案;課后作業要按質、按量、按時、書寫工整完成,并能作到方法最佳,有錯就改。
俗話說:“好問的孩子必成大器”。教師應積極鼓勵學生質疑問難,帶著知識疑點問老師、問同學、問家長,大力提倡學生自己設計數學問題,大膽、主動地與他人交流,這樣既能融洽師生關系,增進同學友情,又可以使學生的交際、表達等方面的能力逐步提高。
6.勇于“辯”的習慣。
討論和爭辯是思維最好的媒介,它可以形成師生之間、同學之間多渠道、廣泛的信息交流。讓學生在爭辯中表現自我、互相啟迪、交流所得、增長才干,最終統一對真知的認同。
小學數學知識歸納與總結篇十七
(一)“大數的認識”:
1.知識技能目標:鞏固所學的計數單位和相鄰兩個單位之間的進率,掌握數位順序表,能正確地讀寫大數,掌握改寫和省略的方法。
(2)多位數的讀寫法的方法是什么?
(3)改寫和省略的方法是什么?
(4)如何比較數的大小?
3.對應練習。
(1)讀出下面各數。
62315797005008239804000001000400070。
4003000023674001000061540000030708000000。
(2)寫出下面各數。
四千零二萬一百零三二千零四十萬四千零三十。
一十億零五百六十八一百二十億四千零八萬五千零四十。
(3)改寫成以億做單位的數:224100000000212000000000。
(4)求近似數。
265805602527641880808(省略萬后面的'尾數)。
34564631071233547811220805658(省略億后面的尾數)。
(5)用1、5、7、9和4個0按要求寫出八位數。
最大的數(),最小的數是(),一個0都不讀的數,只讀出一個0的數(),要讀出2個0的數()。
(二)“乘除法”復習。
1.知識技能目標:通過復習,鞏固所學的乘除法口算和筆算的計算方法,在計算過程中能靈活應用因數和積的關系、商變化的規律,正確熟練地計算。
2.復習知識點:
(1)復習口算。
230×4=3×380=150×4=108×3=。
350×2=70×5=2700÷30=1800÷60=。
360÷90=2400÷60=8000÷40=4200÷60=。
(2)不計算,直接寫出下面的積。
16×392=6272160×392=16×3920=。
792÷24=33396÷12=1584÷48=。
想一想,你是根據什么得出結果的?(積的變化規律和商的變換規律)。
(3)筆算。
145×37=540×18=508×60=509×57=。
948÷19=676÷64=516÷43=338÷13=。
小學數學知識歸納與總結篇十八
1、直接解題法(直接法)。
直接從題設條件出發,運用有關概念、性質、定理、法則和公式等知識,通過嚴密的推理和準確的運算,從而得出正確的結論,然后對照題目所給出的選擇支“對號入座”作出相應的選擇。涉及概念、性質的辨析或運算較簡單的題目常用直接法。直接法是解答選擇題最常用的基本方法,低檔選擇題可用此法迅速求解。直接法適用的范圍很廣,只要運算正確必能得出正確的答案。提高直接法解選擇題的能力,準確地把握中檔題目的“個性”,用簡便方法巧解選擇題,是建立在扎實掌握“三基”的基礎上,否則一味求快則會快中出錯。
2、特殊值解題。
正確的選擇對象,在題設普遍條件下都成立的情況下,用特殊值(取得越簡單越好)進行探求,從而清晰、快捷地得到正確的答案,即通過對特殊情況的研究來判斷一般規律,是解答本類選擇題的最佳策略。近幾年高考選擇題中可用或結合特例法解答的約占30%左右。通過取適合條件的特殊值、特殊圖形、特殊位置等進行分析,往往能簡縮思維過程、降低難度而迅速地解。
3、數形結合法或者割補法(解析幾何常用方法):
巧妙地利用割補法,可以將不規則的圖形轉化為規則的圖形,這樣可以使問題得到簡化,從而縮短解題長度。對于一些具有幾何背景的數學問題,如能構造出與之相應的圖形進行分析,往往能在數形結合、以形助數中獲得形象直觀的解法。
4、極限法。
這是高中選修部分,不過用在解題會很快。極限思想是一種基本而重要的數學思想。當一個變量無限接近一個定量,則變量可看作此定量。對于某些選擇題,若能恰當運用極限思想思考,則往往可使過程簡單明快。用極限法是解選擇題的一種有效方法。它根據題干及選擇支的特征,考慮極端情形,有助于縮小選擇面,迅速找到答案。
小學數學知識歸納與總結篇十九
離散數學是計算機科學基礎理論的核心課程之一,是計算機及應用、通信等專業的一門重要的基礎課。它以研究量的結構和相互關系為主要目標,其研究對象一般是有限個或可數個元素,充分體現了計算機科學離散性的特點。學習離散數學的目的是為學習計算機、通信等專業各后續課程做好必要的知識準備,進一步提高抽象思維和邏輯推理的能力,為計算機的應用提供必要的描述工具和理論基礎。
1.定義和定理多。
離散數學是建立在大量定義、定理之上的邏輯推理學科,因此對概念的理解是學習這門課程的核心。在學習這些概念的基礎上,要特別注意概念之間的聯系,而描述這些聯系的實體則是大量的定理和性質。在考試中有一部分內容是考查學生對定義和定理的識記、理解和運用,因此要真正理解離散數學中所給出的每個基本概念的真正的含義。比如,命題的定義、五個基本聯結詞、公式的主析取范式和主合取范式、三個推理規則以及反證法;集合的五種運算的定義;關系的定義和關系的四個性質;函數(映射)和幾種特殊函數(映射)的定義;圖、完全圖、簡單圖、子圖、補圖的定義;圖中簡單路、基本路的定義以及兩個圖同構的定義;樹與最小生成樹的定義。掌握和理解這些概念對于學好離散數學是至關重要的。
2.方法性強。
在離散數學的學習過程中,一定要注重和掌握離散數學處理問題的方法,在做題時,找到一個合適的解題思路和方法是極為重要的。如果知道了一道題用怎樣的方法去做或證明,就能很容易地做或證出來。反之,則事倍功半。在離散數學中,雖然各種各樣的題種類繁多,但每類題的解法均有規律可循。所以在聽課和平時的復習中,要善于總結和歸納具有規律性的內容。在平時的講課和復習中,老師會總結各類解題思路和方法。作為學生,首先應該熟悉并且會用這些方法,同時,還要勤于思考,對于一道題,進可能地多探討幾種解法。
3.抽象性強。
離散數學的特點是知識點集中,對抽象思維能力的要求較高。由于這些定義的抽象性,使初學者往往不能在腦海中直接建立起它們與現實世界中客觀事物的聯系。不管是哪本離散數學教材,都會在每一章中首先列出若干個定義和定理,接著就是這些定義和定理的直接應用,如果沒有較好的抽象思維能力,學習離散數學確實具有一定的困難。因此,在離散數學的學習中,要注重抽象思維能力、邏輯推理能力的培養和訓練,這種能力的培養對今后從事各種工作都是極其重要的。
在學習離散數學中所遇到的這些困難,可以通過多學、多看、認真分析講課中所給出的典型例題的解題過程,再加上多練,從而逐步得到解決。在此特別強調一點:深入地理解和掌握離散數學的基本概念、基本定理和結論,是學好離散數學的重要前提之一。所以,同學們要準確、全面、完整地記憶和理解所有這些基本定義和定理。
4.內在聯系性。
離散數學的三大體系雖然來自于不同的學科,但是這三大體系前后貫通,形成一個有機的整體。通過認真的分析可尋找出三大部分之間知識的內在聯系性和規律性。如:集合論、函數、關系和圖論,其解題思路和證明方法均有相同或相似之處。
如何應對考試:一般來說,離散數學的考試要求分為了解、理解和掌握。了解是能正確判別有關概念和方法;理解是能正確表達有關概念和方法的含義;掌握是在理解的基礎上加以靈活應用。為了考核學生對這三部分的理解和掌握的程度,試題類型一般可分為:判斷題、填空題、選擇題、計算題和證明題。判斷題、填空題、選擇題主要涉及基本概念、基本理論、重要性質和結論、公式及其簡單計算;計算題主要考核學生的基本運用技能和速度,要求寫出完整的計算過程和步驟;證明題主要考查應用概念、性質、定理及重要結論進行邏輯推理的能力,要求寫出嚴格的推理和論證過程。
學習離散數學的最大困難是它的抽象性和邏輯推理的嚴密性。在離散數學中,假設讓你解一道題或證明一個命題,你應首先讀懂題意,然后尋找解題或證明的思路和方法,當你相信已找到了解題或證明的思路和方法,你必須把它嚴格地寫出來。一個寫得很好的解題過程或證明是一系列的陳述,其中每一條陳述都是前面的陳述經過簡單的推理而得到的。仔細地寫解題過程或證明是很重要的,既能讓讀者理解它,又能保證解題過程或證明準確無誤。一個好的解題過程或證明應該是條理清楚、論據充分、表述簡潔的。針對這一要求,在講課中老師會提供大量的典型例題供同學們參考和學習。
通過離散數學的學習和訓練,能使同學們學會在離散數學中處理問題的一般性的規律和方法,一旦掌握了離散數學中這種處理問題的思想方法,學習和掌握離散數學的知識就不再是一件難事了。
首先要明確的是,由于《離散數學》是一門數學課,且是由幾個數學分支綜合在一起的,內容繁多,非常抽象,因此即使是數學系的學生學起來都會倍感困難,對計算科學專業的學生來說就更是如此。大家普遍反映這是大學四年最難學的一門課之一。但鑒于《離散數學》在計算科學中的重要性,這是一門必須牢牢掌握的課程。既然如此,在學習《離散數學》時,大家最應該牢記的是唐詩“熟讀唐詩三百首,不會做詩也會吟。”學習過程是一個扎扎實實積累的過程,不能打馬虎眼。離散數學是理論性較強的學科,學習離散數學的關鍵是對離散數學(集合論、數理邏輯和圖論)有關基本概念的準確掌握,對基本原理及基本運算的運用,并要多做練習。
《離散數學》的特點是:
1、知識點集中,概念和定理多:《離散數學》是建立在大量概念之上的邏輯推理學科,概念的理解是我們學習這門學科的核心。不管哪本離散數學教材,都會在每一章節列出若干定義和定理,接著就是這些定義定理的直接應用。掌握、理解和運用這些概念和定理是學好這門課的關鍵。要特別注意概念之間的聯系,而描述這些聯系的則是定理和性質。
2、方法性強:離散數學的特點是抽象思維能力的要求較高。通過對它的學習,能大大提高我們本身的邏輯推理能力、抽象思維能力和形式化思維能力,從而今后在學習任何一門計算機科學的專業主干課程時,都不會遇上任何思維理解上的困難。《離散數學》的證明題多,不同的題型會需要不同的證明方法(如直接證明法、反證法、歸納法、構造性證明法),同一個題也可能有幾種方法。但是《離散數學》證明題的方法性是很強的,如果知道一道題用什么方法講明,則很容易可以證出來,否則就會事倍功半。因此在平時的學習中,要勤于思考,對于同一個問題,盡可能多探討幾種證明方法,從而學會熟練運用這些證明方法。一般來說,由于這些概念(定義)非常抽象(學習《線性代數》時會有這樣的經歷),初學者往往不能在腦海中建立起它們與現實世界中客觀事物的聯系。這往往是《離散數學》學習過程中初學者要面臨的第一個困難,他們覺得不容易進入學習的狀態。因此一開始必須準確、全面、完整地記住并理解所有的定義和定理。具體做法是在進行完一章的學習后,用專門的時間對該章包括的定義與定理實施強記。只有這樣才可能本課程的抽象能夠適應,并為后續學習打下良好的基礎。
將本文的word文檔下載到電腦,方便收藏和打印。