日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 高二上學期數學知識點總結 高二上學期數學知識點(匯總8篇)

高二上學期數學知識點總結 高二上學期數學知識點(匯總8篇)

格式:DOC 上傳日期:2023-06-11 18:02:07
高二上學期數學知識點總結 高二上學期數學知識點(匯總8篇)
時間:2023-06-11 18:02:07     小編:zdfb

總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來,讓我們一起認真地寫一份總結吧。那關于總結格式是怎樣的呢?而個人總結又該怎么寫呢?以下是小編為大家收集的總結范文,僅供參考,大家一起來看看吧。

高二數學知識點歸納總結圖高二上學期數學重點知識點篇一

(3)確定事件:必然事件和不可能事件統稱為相對于條件s的確定事件;

(5)頻數與頻率:在相同的條件s下重復n次試驗,觀察某一事件a是否出現,稱n次試驗中事件a出現的次數na為事件a出現的頻數;稱事件a出現的比例fn(a)=nna為事件a出現的概率:對于給定的隨機事件a,如果隨著試驗次數的增加,事件a發生的頻率fn(a)穩定在某個常數上,把這個常數記作p(a),稱為事件a的概率。

(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數na與試驗總次數n的比值nna,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率。

然說難度比較大,我建議考生,采取分部得分整個試

高二數學知識點歸納總結圖高二上學期數學重點知識點篇二

1、直線的傾斜角的范圍是

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關系:

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:.⑵圓的一般方程:

注意能將標準方程化為一般方程

二、圓錐曲線方程:

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(2)平行于x軸的線段長不變,平行于y軸的線段長減半.

3、表(側)面積與體積公式:

⑶臺體①表面積:s=s側+s上底s下底②側面積:s側=

⑷球體:①表面積:s=;②體積:v=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

5、求角:(步驟-------ⅰ.找或作角;ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導數:導數的意義-導數公式-導數應用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2.導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上p(x0,f(x0))切線斜率。v=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導數的四則運算法則:

5.導數的應用:

注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

(3)求可導函數值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

3、邏輯聯結詞:

⑴且(and):命題形式pq;pqpqpqp

⑵或(or):命題形式pq;真真真真假

⑶非(not):命題形式p.真假假真假

假真假真真

假假假假真

“或命題”的真假特點是“一真即真,要假全假”;

“且命題”的真假特點是“一假即假,要真全真”;

“非命題”的真假特點是“一真一假”

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學知識點歸納總結圖高二上學期數學重點知識點篇三

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程。

1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸。

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

高二數學知識點歸納總結圖高二上學期數學重點知識點篇四

(3)確定事件:必然事件和不可能事件統稱為相對于條件s的確定事件;

(5)頻數與頻率:在相同的條件s下重復n次試驗,觀察某一事件a是否出現,稱n次試驗中事件a出現的次數na為事件a出現的頻數;稱事件a出現的比例fn(a)=nna為事件a出現的概率:對于給定的隨機事件a,如果隨著試驗次數的增加,事件a發生的頻率fn(a)穩定在某個常數上,把這個常數記作p(a),稱為事件a的概率。

(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數na與試驗總次數n的比值nna,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率。

高二數學知識點歸納總結圖高二上學期數學重點知識點篇五

利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立。

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

(4)檢查f(x)的符號并由表格判斷極值。

如果函數f(x)在定義域i內存在x0,使得對任意的xi,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xa)的值域是[a,b]時,

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xa)的值域是(a,b)時,

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。

高二數學知識點歸納總結圖高二上學期數學重點知識點篇六

①在統計學中,把研究對象的全體叫做總體.

②把每個研究對象叫做個體.

③把總體中個體的總數叫做總體容量.

就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。

①抽簽法

②隨機數表法

③計算機模擬法

在簡單隨機抽樣的樣本容量設計中,主要考慮:

①總體變異情況;

②允許誤差范圍;

③概率保證程度。

①給調查對象群體中的每一個對象編號;

②準備抽簽的工具,實施抽簽;

③對樣本中的每一個個體進行測量或調查

高二數學知識點歸納總結圖高二上學期數學重點知識點篇七

(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;

②求導數f(x);

③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;

④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立。

2.求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

(1)確定函數f(x)的定義域;

(2)求導數f(x);

(4)檢查f(x)的符號并由表格判斷極值。

3.求函數的值與最小值:

如果函數f(x)在定義域i內存在x0,使得對任意的xi,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。

4.解決不等式的有關問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

5.導數在實際生活中的應用:

實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。

高二數學知識點歸納總結圖高二上學期數學重點知識點篇八

學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。

二、主動復習與總結提高

(1)要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。

(2)把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。要把對技能的要求(對“鋸,斧,鑿子…”的使用總結),列進這兩部分中的一部分,不要遺漏。

(3)在基礎知識的疏理中,要羅列出所學的所有定義,定理,法則,公式。要做到三會兩用。即:會代字表述,會圖象符號表述,會推導證明。同時能從正反兩方面對其進行應用。

(4)把重要的,典型的各種問題進行編隊。(怎樣做“板凳,椅子,書架…”)要盡量地把他們分類,找出它們之間的位置關系,總結出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結構和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數學水平的關鍵所在。

(5)總結那些尚未歸類的問題,作為備注進行補充說明。

(6)找一份適當的測驗試卷。一定要計時測驗。然后再對照答案,查漏補缺。

三、

重視改錯,錯不重犯

一定要重視改錯工作,做到錯不再犯。高中數學課沒有那么多時間,除了少數幾種典型錯,其它錯誤,不能一一顧及。如果能及時改錯,那么錯誤就可能轉變為財富,成為不再犯這種錯誤的預防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的學生認為,自己考試成績上不去,是因為自己做題太粗心。而且,自己特愛粗心。打一個比方。比如說,學習開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機械原理,設計原因,操作規程都可以講的清清楚楚。如果新司機真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習。一兩次能正確地完成任務,并不能說明永遠不出錯。

四、圖是高中數學的生命線

圖是初等數學的生命線,能不能用圖支撐思維活動是能否學好初等數學的關鍵。無論是幾何還是代數,拿到題的第一件事都應該是畫圖。有的時候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時就更應該畫圖,圖可以清楚地呈現出已知條件。而且解難題時至少一問畫一個圖,這樣看起來清晰,做題的時候也好捋順思路。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服