日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 高二數學知識點 高二數學知識點梳理(通用五篇)

高二數學知識點 高二數學知識點梳理(通用五篇)

格式:DOC 上傳日期:2023-06-11 18:12:59
高二數學知識點 高二數學知識點梳理(通用五篇)
時間:2023-06-11 18:12:59     小編:zdfb

每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。那么我們該如何寫一篇較為完美的范文呢?接下來小編就給大家介紹一下優秀的范文該怎么寫,我們一起來看一看吧。

高二數學知識點篇一

、圓錐曲線(18課時,7個)

1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的.數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修ⅱ(24個)

概率與統計(14課時,6個)

1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸。

高二數學知識點篇二

(1)直線與平面平行的判定及其性質

線線平行線面平行

那么這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質

兩個平面平行的判定定理

(線面平行→面面平行),

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質定理

(1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

高二數學知識點篇三

對于函數y=f(x)(x∈d),把使f(x)=0成立的實數x叫做函數y=f(x)(x∈d)的零點。

(2)函數的零點與相應方程的根、函數的圖象與x軸交點間的關系:

方程f(x)=0有實數根?函數y=f(x)的圖象與x軸有交點?函數y=f(x)有零點。

(3)函數零點的判定(零點存在性定理):

如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,并且有f(a)·f(b)0,那么,函數y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

二二次函數y=ax2+bx+c(a0)的圖象與零點的關系

三二分法

對于在區間[a,b]上連續不斷且f(a)·f(b)0的函數y=f(x),通過不斷地把函數f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

1、函數的零點不是點:

函數y=f(x)的零點就是方程f(x)=0的實數根,也就是函數y=f(x)的圖象與x軸交點的橫坐標,所以函數的零點是一個數,而不是一個點。在寫函數零點時,所寫的一定是一個數字,而不是一個坐標。

2、對函數零點存在的判斷中,必須強調:

(1)、f(x)在[a,b]上連續;

(2)、f(a)·f(b)0;

(3)、在(a,b)內存在零點。

這是零點存在的一個充分條件,但不必要。

3、對于定義域內連續不斷的函數,其相鄰兩個零點之間的所有函數值保持同號。

利用函數零點的存在性定理判斷零點所在的區間時,首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)0。若有,則函數y=f(x)在區間(a,b)內必有零點。

四判斷函數零點個數的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

2、零點存在性定理法:

利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)0,還必須結合函數的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函數有多少個零點。

3、數形結合法:

轉化為兩個函數的圖象的交點個數問題。先畫出兩個函數的圖象,看其交點的個數,其中交點的個數,就是函數零點的個數。

已知函數有零點(方程有根)求參數取值常用的方法

1、直接法:

直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍。

2、分離參數法:

先將參數分離,轉化成求函數值域問題加以解決。

3、數形結合法:

先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解。

高二數學知識點篇四

等腰直角三角形面積公式:s=a2/2,s=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

面積公式

若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

s=ab/2。

s=ch/2=c2/4。

等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

高二數學知識點篇五

排列p——————和順序有關

組合c———————不牽涉到順序的問題

排列分順序,組合不分

例如把5本不同的書分給3個人,有幾種分法。"排列"

把5本書分給3個人,有幾種分法"組合"

1.排列及計算公式

從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示。

p(n,m)=n(n—1)(n—2)……(n—m+1)=n!/(n—m)!(規定0!=1)。

2.組合及計算公式

c(n,m)表示。

3.其他排列與組合公式

從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n—r)!。

n個元素被分成k類,每類的個數分別是n1,n2,..nk這n個元素的全排列數為n!/(n1!xn2!x..xnk!)。

k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k—1,m)。

排列(pnm(n為下標,m為上標))

組合(cnm(n為下標,m為上標))

20xx—07—0813:30

因為從n到(n—r+1)個數為n—(n—r+1)=r

舉例:

q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數?

a1:123和213是兩個不同的排列數。即對排列順序有要求的,既屬于“排列p”計算范疇。

上問題中,任何一個號碼只能用一次,顯然不會出現988,997之類的組合,我們可以這么看,百位數有9種可能,十位數則應該有9—1種可能,個位數則應該只有9—1—1種可能,最終共有9x8x7個三位數。計算公式=p(3,9)=9x8x7,(從9倒數3個的乘積)

a2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合c”計算范疇。

排列、組合的概念和公式典型例題分析

解(1)由于每名學生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數,因此共有種不同方法。

(2)由于每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加,因此共有種不同方法。

點評由于要讓3名學生逐個選擇課外小組,故兩問都用乘法原理進行計算。

∴符合題意的不同排法共有9種。

點評按照分“類”的思路,本題應用了加法原理。為把握不同排法的規律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數問題的一種數學模型。

例3判斷下列問題是排列問題還是組合問題?并計算出結果。

分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關,所以是組合問題。其他類似分析。

(1)①是排列問題,共用了封信;②是組合問題,共需握手(次)。

(2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法。

(3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積。

(4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法。

例4證明。

證明左式

右式。

∴等式成立。

點評這是一個排列數等式的證明問題,選用階乘之商的形式,并利用階乘的性質,可使變形過程得以簡化。

例5化簡。

解法一原式

解法二原式

點評解法一選用了組合數公式的階乘形式,并利用階乘的性質;解法二選用了組合數的兩個性質,都使變形過程得以簡化。

例6解方程:(1);(2)。

解(1)原方程

解得。

(2)原方程可變為

∵,,

∴原方程可化為。

即,解得

第六章排列組合、二項式定理

一、考綱要求

1.掌握加法原理及乘法原理,并能用這兩個原理分析解決一些簡單的問題。

2.理解排列、組合的意義,掌握排列數、組合數的計算公式和組合數的性質,并能用它們解決一些簡單的問題。

3.掌握二項式定理和二項式系數的性質,并能用它們計算和論證一些簡單問題。

二、知識結構

三、知識點、能力點提示

(一)加法原理乘法原理

說明加法原理、乘法原理是學習排列組合的基礎,掌握此兩原理為處理排列、組合中有關問題提供了理論根據。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服