日韩色色日韩,午夜福利在线视频,亚洲av永久无码精品,国产av国片精品jk制服丝袜

當前位置:網站首頁 >> 作文 >> 數學八上課件 八年級上冊數學課程課件三篇(優質)

數學八上課件 八年級上冊數學課程課件三篇(優質)

格式:DOC 上傳日期:2023-04-11 07:52:42
數學八上課件 八年級上冊數學課程課件三篇(優質)
時間:2023-04-11 07:52:42     小編:zdfb

在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢?以下是我為大家搜集的優質范文,僅供參考,一起來看看吧

數學八上課件 八年級上冊數學課程課件篇一

1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;

2、會運用兩數差的平方公式進行計算。

二、學習過程:

請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:

(一)探索

1、計算: (a - b) =

方法一: 方法二:

方法三:

2、兩數差的平方用式子表示為_________________________;

用文字語言敘述為___________________________ 。

3、兩數差的平方公式結構特征是什么?

(二)現學現用

利用兩數差的平方公式計算:

1、(3 - a) 2、 (2a -1) 3、(3y-x)

4、(2x – 4y) 5、( 3a - )

(三)合作攻關

靈活運用兩數差的平方公式計算:

1、(999) 2、( a – b – c )

3、(a + 1) -(a-1)

(四)達標訓練

1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

a、a -2ab + 4b b、a -4b

c、a +4b d、 a - 4ab +4b

2、填空:

(1)9x + + 16y = (4y - 3x )

(2) ( ) = m - 8m + 16

2、計算:

( a - b) ( x -2y )

3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

(四)提升

1、本節課你學到了什么?

2、已知a – b = 1,a + b = 25,求ab 的值

數學八上課件 八年級上冊數學課程課件篇二

1、教材分析

(1)知識結構

(2)重點、難點分析

本節內容的重點是線段垂直平分線定理及其逆定理。定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據。

本節內容的難點是定理及逆定理的關系。垂直平分線定理和其逆定理,題設與結論正好相反。學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點。

2、 教法建議

本節課教學模式主要采用“學生主體性學習”的教學模式。提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納。教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人。具體說明如下:

(1)參與探索發現,領略知識形成過程

學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”。然后學生完成證明,找一名學生的證明過程,進行投影總結。最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理。這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

(2)采用“類比”的學習方法,獲取逆定理

線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系。

(3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力。

數學八上課件 八年級上冊數學課程課件篇三

教學目標:

一、知識與技能

1、從現實情境和已有的知識、經驗出發、討論兩個變量之間的相依關系,加深對函數、函數概念的理解。

2、經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。

二、過程與方法

1、經歷對兩個變量之間相依關系的討論,培養學生的辨別唯物主義觀點。

2、經歷抽象反比例函數概念的過程,發展學生的抽象思維能力,提高數學化意識。

三、情感態度與價值觀

1、經歷抽象反比例函數概念的過程,體會數學學習的重要性,提高學生的學習數學的興趣。

2、通過分組討論,培養學生合作交流意識和探索精神。

教學重點:理解和領會反比例函數的概念。

教學難點:領悟反比例的概念。

教學過程:

一、創設情境,導入新課

活動1

問題:下列問題中,變量間的對應關系可用怎樣的函數關系式表示?這些函數有什么共同特點?

(1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

(2)某住宅小區要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

(3)已知北京市的總面積為1、68×104平方千米,人均占有土地面積s(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化。

師生行為:

先讓學生進行小組合作交流,再進行全班性的問答或交流。學生用自己的語言說明兩個變量間的關系為什么可以看著函數,了解所討論的函數的表達形式。

教師組織學生討論,提問學生,師生互動。

在此活動中老師應重點關注學生:

①能否積極主動地合作交流。

②能否用語言說明兩個變量間的關系。

③能否了解所討論的函數表達形式,形成反比例函數概念的具體形象。

分析及解答:

其中v是自變量,t是v的函數;x是自變量,y是x的函數;n是自變量,s是n的函數;

上面的函數關系式,都具有

的形式,其中k是常數。

二、聯系生活,豐富聯想

活動2

下列問題中,變量間的對應關系可用這樣的函數式表示?

(1)一個游泳池的容積為20__m3,注滿游泳池所用的時間隨注水速度u的變化而變化;

(2)某立方體的體積為1000cm3,立方體的高h隨底面積s的變化而變化;

(3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積s的變化而變化。

師生行為

學生先獨立思考,在進行全班交流。

教師操作課件,提出問題,關注學生思考的過程,在此活動中,教師應重點關注學生:

(1)能否從現實情境中抽象出兩個變量的函數關系;

(2)能否積極主動地參與小組活動;

(3)能否比較深刻地領會函數、反比例函數的概念。

概念:如果兩個變量x,y之間的關系可以表示成

的形式,那么y是x的反比例函數,反比例函數的自變量x不能為零。

活動3

做一做:

一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm。那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?

師生行為:

學生先進行獨立思考,再進行全班交流。教師提出問題,關注學生思考。此活動中教師應重點關注:

①生能否理解反比例函數的意義,理解反比例函數的概念;

②學生能否順利抽象反比例函數的模型;

③學生能否積極主動地合作、交流;

活動4

問題1:下列哪個等式中的y是x的反比例函數?

問題2:已知y是x的反比例函數,當x=2時,y=6

(1)寫出y與x的函數關系式:

(2)求當x=4時,y的值。

師生行為:

學生獨立思考,然后小組合作交流。教師巡視,查看學生完成的情況,并給予及時引導。在此活動中教師應重點關注:

①學生能否領會反比例函數的意義,理解反比例函數的概念;

②學生能否積極主動地參與小組活動。

分析及解答:

1、只有xy=123是反比例函數。

2、分析:因為y是x的反比例函數,所以,再把x=2和y=6代入上式就可求出常數k的值。

解:(1)設,因為x=2時,y=6,所以有

解得k=12

因此

(2)把x=4代入,得

三、鞏固提高

活動5

1、已知y是x的反比例函數,并且當x=3時,y=8。

(1)寫出y與x之間的函數關系式。

(2)求y=2時x的值。

2、y是x的反比例函數,下表給出了x與y的一些值:

(1)寫出這個反比例函數的表達式;

(2)根據函數表達式完成上表。

學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關注“學困生”。

四、課時小結

反比例函數概念形成的過程中,大家充分利用已有的生活經驗和背景知識,注意挖掘問題中變量的相依關系及變化規律,逐步加深理解。在概念的形成過程中,從感性認識到理發認識一旦建立概念,即已擺脫其原型成為數學對象。反比例函數具有豐富的數學含義,通過舉例、說理、討論等活動,感知數學眼光,審視某些實際現象。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服