每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。大家想知道怎么樣才能寫一篇比較優質的范文嗎?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
分數乘整數篇一
《分數乘整數》是分數乘法單元的第一課時,本課主要讓學生通過自主探索,了解分數與整數相乘的意義,知道“求幾個幾分之幾相加的和”可以用乘法計算,初步理解并掌握分數與整數相乘的計算方法。而分數與整數相乘的意義與整數相乘的意義相同,這節課在引入課題時,葛文娟老師設計了下面的兩道習題:
(1)做一朵綢花要30厘米綢帶,小麗做3朵這樣的綢花,一共用多少厘米綢帶?
(2)做一朵綢花要0.3米綢帶,小紅做3朵這樣的綢花,一共用多少米綢帶?
通過讓學生列式并追問為什么都用乘法計算,激活學生已有的對整數乘法意義的認識。然后再通過改題呈現例1:做一朵綢花要米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?學生順理成章地列出了例1的乘法算式,通過我追問這題為什么也用乘法計算?學生自然地將整數乘法的意義遷移到分數乘整數的意義中,實現了知識的正遷移。
在學習本課之前,其實已經有許多學生大概知道了分數乘整數的計算方法,但對于為什么要這樣算就不清楚了。如果再按照一般的教學程序(呈現問題——探討研究——得出結論)進行教學,學生就會覺得“這些知識我早就知道了,沒什么可學的了?!保瑥亩ヌ骄康呐d趣。教師的主導作用在于設計恰當的教學形式,調動不同層次的學生的學習興趣。于是在教學時×3的算法時,小葛老師問:你知道怎么乘嗎,你認為整數3與分數的什么相乘呢?重點讓學生明白為什么要這樣乘。抓住這一質疑點,提出:“為什么只把分子與整數相乘,分母不變”接下來的教學就引導學生帶著“為什么”去探索。由質疑開始的探索是學生為滿足自身需要而進行的主動探索,因此學生在課堂上迫不及待地,積極主動地進行討論,從不同的角度解決疑問。
每個學生都有各自的生活經驗和知識基礎,面對需要解決的問題,他們都是從自己特有的數學現實出發來構建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節課中,葛老師放手讓學生用自己思維方式進行自由的、多角度的思考,學生自主地構建知識,充分體現了“不同的人學習不同的數學”的理念。有的學生通過對分數乘整數的意義的理解,將分數乘整數與分數加法的計算方法聯系起來思考;有的學生通過計算分數單位的個數來理解;有的學生講清了分母不能與整數相乘,只能將分子與整數相乘的道理;還有的學生將分數轉換為小數,同樣得到了正確的結果。由此我深深地體會到,包括教師在內的任何人,都不能要求學生按照我們成人的`或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學生的思維發展。
分數乘整數篇二
一、尊重學生的“數學現實”。
在教學分數乘整數之前,其實班里已經有不少學生知道了分數乘整數的計算方法。如果再按照一般的教學程序進行教學,學生就會覺得“這些知識我早就知道了,沒什么可學的了。”,從而失去探究的興趣。于是在教學時,我提出:“為什么結果是9/10?為什么要把分子與整數相乘?”接下來的教學就引導學生帶著“為什么”去探索。
二、實現教學學習的個性化。
每個學生都有各自的生活經驗和知識基礎,面對需要解決的問題,他們都是從自己特有的.數學現實出發來構建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節課中,我放手讓學生用自己思維方式進行自由的、多角度的思考,學生自主地構建知識,充分體現了“不同的人學習不同的數學”的理念。有的學生通過對分數乘整數的意義的理解,將分數乘整數與分數加法的計算方法聯系起來思考;有的學生通過在老師給的練習紙上涂色來得到結果;有的學生講清了為什么將分子與整數相乘的道理;還有的學生將分數轉換為小數,同樣得到了正確的結果。由此我深深地體會到,包括教師在內的任何人,都不能要求學生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學生的思維發展。
三、對教材進行重組。
本節課時一節枯燥乏味的計算課,因此我利用烏龜和兔子進行智力比賽的方式來刺激學生求知解題的欲望,讓孩子們在充滿競爭和挑戰的環境氛圍下,不知不覺地完成書本上的基本練習。當然我也對教材的聯系題目進行了重組和改編。如練一練第一題,我就把4個改成了3個,這樣就使得這題避免約分,先解決不用約分的計算方法,再進行約分的教學。使整節課自然分成兩部分來進行。
四、存在的一些問題。
本節課總體來說比較成功,課堂上的內容都比較順利的完成了,但是在讓學生體會先約分比較簡單時,出現了些問題。在做完例題第二個問題之后,依然有不少學生依然覺得先計算好,于是我就出示了四道題目,其中最后一題數據較大,可以很好的引導學生得出正確的結論。但我現在覺得,如果在例題教學完之后就直接完成那個8/11×99,這樣就更加直接了,學生立刻就能體會到先約分的好處了,那么再做其它需要進行約分的題目就方便了。
將本文的word文檔下載到電腦,方便收藏和打印。
分數乘整數篇三
《分數與整數相乘》這是學生首次接觸分數乘法。分數與整相乘在運算意義上與整數乘法一致,因而算法是教學的重點。
《課程標準》強調從學生的熟悉的生活經驗和學習經驗,讓數學學習成為學生“生動活潑、主動發展和富有個性的過程”,本課重視了讓學生成為學習的主人,積極主動地探究學習新知,體驗成功的快樂!
我認為教者以下幾點做得比較好:
計算課是比較單調和枯燥的,為了避免單純的機械計算,將計算學習與解決問題有機結合。創設了班里同學為教師節做裝飾花的實際情境,引導學生明白分數和整數相乘的意義與整數乘法的意義相同,都是求幾個相同加數的簡便運算,又可以啟發學生用加法算出3/10×3的結果。
由于分數和整數相乘可以轉化成幾個相同加數連加的算式,因此,例1放手讓學生嘗試計算,著重讓學生說一說計算的思考過程。因為很多學生可能憑借經驗只知道怎么算,不知道為什么這樣算。尤其是對于分數和整數相乘時,為什么直接將分子與整數相乘的積作分子,而分母不變,學生不一定明確。因此,這節課不能僅僅滿足學生會算,更重要的是要讓學生理解分數與整數相乘的含義,關注學生理解分數與整數相乘的算理,理解和掌握為什么可以這樣算?這樣做的理由是什么?這樣做能夠很好的突出重點,突破難點,要讓學生不僅知其然,更重要的是知其所以然。教材的例題側重體現加法和乘法之間的轉化,板書對照清楚明晰,學生很容易發現乘的計算方法,。
在本環節學生的技能得到了鞏固和提升,特別是兩個常見的改錯題引發學生自我反思、自我完善計算方法,已達到算法的自主優化。
分數乘整數篇四
本節課我從復習同分母分數加法引入,得出整數乘法的意義和分數乘整數的意義相同都是求幾個相同加數和的簡便運算,由此進入分數乘整數方法的計算教學。教學方法時我注重算理的講解、注重圖形和算式的聯系。可以說這節課的`內容很簡單,但作業反饋的情況看正確率卻很低。存在的問題就是約分的環節,有些學生喜歡算出結果以后再約分,就比較愛出錯。再由于上學期的約分知識很多學生就不熟練,有不少學生仍不斷出現約分錯誤和忘記約分的情況。
作為分數乘法的第一節課——分數乘整數,形成先約分后計算的良好計算習慣,對于提高學生計算的正確率和計算速度,有著很重要的作用。
分數乘整數篇五
一、引導自主探索,了解分數與整數相乘的意義。
1、導入新課時,引導學生涂色表示3個米,目的是讓學生認識到求3個米可以用加法計算,也可以用乘法計算,再借助所列的加法算式初步理解分數與整數相乘的意義,并為引導學生探索分數與整數相乘的計算方法進行了知識結構上的鋪墊。
2、通過交流與討論,引導學生主動聯系已有的知識經驗進行分析、歸納和類推,×3=?進一步發展學生合情推理能力,體驗探索學習的樂趣。
二、加強過程體驗,體會過程約分比結果約分更簡便。在解決例1的第(2)題時,我在處理算法多樣化與算法優化時設計了88×8/11=?的練習,讓學生用兩種方法計算,加強過程體驗,學生通過親身體驗后,體會到過程約分比結果約分更簡便且不易錯,形成一種內在需求,優化算法。存在不足:本課算理強調還不夠,特別是練一練第1題,在學生獨立完成后,我在組織交流時不夠充分,只交流了學生的計算方法和結果,忽視了學生是如何涂出4個3/16的,后來我發現學生涂得方法很多,其實通過學生涂色寫算式,可以溝通分數乘法和分數加法間的聯系,進一步體會分數與整數相乘的意義,體會"求幾個幾分之幾相加的和"可以用乘法計算的算理,我沒有很好地把握教材這一練習設計的意圖,沒有敏銳地把握教學資源,很好地鞏固算理。
分數乘整數篇六
本節課教學時,我充分發揮了學生的積極主動性,真正地體現了學生的主體地位,教師真正地成為課堂的組織者和引導者。在例1第一問的教學中,先讓學生嘗試涂色練習,然后通過猜想——觀察——發現規律,在小組中交流自己的發現,而在例1的第二問得教學時我采用大膽放手,讓學生獨立嘗試完成,再讓自己看書校對,培養學生充分利用課本資源,學會學習,最后集體補充完善分數與整數相乘的計算方法。整節課磕磕碰碰,在學生的對比、發現、交流中學習,同時也反映出一些不足。下面我就這節課的教學談談一些感想。
計算教學的課堂中注重的是講明算理,掌握算法,一般對于學生來說,是比較單調和枯燥的,為了避免單純的機械計算,我創設了學生做綢花的實際情境,將計算教學與解決問題有機結合。學生通過觀察、涂條形圖驗證口算3/10×3的答案,再列出算式計算驗證,從而有利于理解分數乘法的意義,又滲透了猜想——驗證——應用的數學思想。這樣處理,既有利于學生主動地把整數乘法的意義推廣到分數乘法中來,即分數和整數相乘的意義與整數乘法的意義相同,都是求幾個相同加數的和的簡便運算,又可以啟發學生用加法算出3/10×3的結果。在教學中,我抓住一米綢帶的這幅圖先讓學生涂出3/10米,然后涂出3個3/10米,再列式計算,圖形結合,借助圖形來說明算理,理解幾個相同加數的和用乘法來計算。
在計算教學中,往往有時我們往往會只關注教會學生如何計算,對為什么可以這樣計算缺乏足夠的重視,而造成了由于算理不清而導致的只會機械計算,不會靈活運用的狀況。因此,在這部分的教學中,我通過圖文結合,引導觀察,巧妙地用色筆作記號,再適時追問,引導學生深入理解算理,讓學生明白分數乘整數為什么分母不變,分子與整數相乘的積作分子的道理。這樣做能夠很好地突出重點,突破難點,讓學生知其然,更知其所以然。最后學生歸納、補充,初步感知分數與整數相乘的計算方法。
相比去年教學本課時,我又做了大膽地嘗試,備這節課時又想起去年執教鎮教研課的情景,用同年級的老師的話是“課堂教學流暢,一氣呵成,要想有所突破,會很難”。細想感覺學生的積極性是很高,算理也理解得很透徹,但總有種學生是“牽得過多,主觀能動性發揮得不太好,所以在教學例1第二問時我改變了原來的方式,大膽放手,先讓學生獨立嘗試計算做5朵這樣的綢花要用綢帶多少米?再打開書本互相補充學習,并觀察比較哪一種方法更好?最后交流完善分數與整數相乘的計算方法(能先約分的要先約分再計算),并互相質疑。其用意是在利用身邊的資源,培養學生學會學習,并能將自己的發現用語言表達出來。為“課堂教學過關”做了一次大膽地嘗試,但情況不是十分理想,特別是學生的數學語言表達能力不強。在今后的教學中,我要更多地關注學生小組合作學習能力,交流能力,自學能力,引導學生學會學習數學。
通過這節課的改革嘗試,我深深體會到:在平時的課堂教學中,我們應該大膽放手讓學生去探索、歸納,充分地相信孩子,把學習的主動權交還給孩子,教師要具有引發學生思考的能力,促使形成合作、探索、質疑、互助的良好學習氛圍。
分數乘整數篇七
本單元有很重要的地位,它既在學生掌握了整數乘法、分數的意義和性質、分數加減法以及約分等知識的基礎上進行學習的,又是學生學習分數除法、比、分數四則混合運算及百分數知識的重要基礎。于是,我教學時就從學生的已有知識基礎和生活經驗出發,引導學生在解決實際問題的情境中,理解分數乘整數的意義。
開頭依據知識的遷移,進行很必要的鋪墊,利用知識間的聯系,精心設置復習題,為教學重點服務,使學生順利掌握“分數乘整數的意義與整數乘法意義相同”。同時復習相同分數加法,為推導計算方法進行鋪墊。
在第一次教學《分數乘整數》之后,其實班里已經有許多學生知道了分數乘整數的計算方法。如果再按照一般的教學程序(呈現問題——探討研究——得出結論)進行教學,學生就會覺得“這些知識我早就知道了,沒什么可學的了?!?,從而失去探究的興趣。教師的主導作用在于設計恰當的教學形式,調動不同層次的學生的學習興趣。于是在教學時,我故意將分數乘整數的結論“灌輸”給學生,省去了獲取結論的研究過程,意在讓學生問“為什么”。這時學生抓住這一質疑點,提出:“為什么只把分子與整數相乘,分母10不和3相乘?”接下來的教學就引導學生帶著“為什么”去探索。將例1進一步作為驗證計算方法的題材。由質疑開始的探索是學生為滿足自身需要而進行的主動探索,因此學生在課堂上迫不及待地,積極主動地進行討論,從不同的角度解決疑問。
每個學生都有各自的生活經驗和知識基礎,面對需要解決的問題,他們都是從自己特有的數學現實出發來構建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節課中,教師放手讓學生用自己思維方式進行自由的、多角度的思考,學生自主地構建知識,充分體現了“不同的人學習不同的數學”的理念。有的學生通過對分數乘整數的意義的理解,將分數乘整數與分數加法的計算方法聯系起來思考;有的學生通過計算分數單位的個數來理解;有的學生講清了分母不能與整數相乘,只能將分子與整數相乘的道理;還有的學生將分數轉換為小數,同樣得到了正確的結果;也有的學生通過生動的數學實例進行了分析。由此我深深地體會到,包或教師在內的任何人,都不能要求學生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學生的思維發展。
本節課的重點是得出分數乘整數的計算方法,約分時,只能將分母與整數約分。我還沒有完全放手讓學生自己總結出計算方法,沒時間多練。對學生還是不放心,老師講得太多,強調的主題太多,一些注意事項沒有變成學生的語言,讓學生去發現,去解決,從而記憶不是很深刻。我覺得補充的內容較多,各種題型的練習,讓課堂顯得時間太緊張,其實我太注重題海戰術,沒有讓學生充分掌握好,跑得太快。只顧及到了成績好的學生,從這一點,我深深體會到什么是“備教材”,“備學生”。課前要把知識點吃透把握住重點、難點,哪些要補充,哪些地方要創造性使用教材。學生以一個什么樣的方式更容易接受,老師哪些地方該講不該講,都需要我們深思熟慮。
分數乘整數篇八
“分數乘整數”在練習中,50%的學生喜歡用分數加法的計算方法來做分數乘法。學生利用式題,不但總結出了分數乘整數的計算方法,而且知道了算理(也就是分數乘整數的意義),真正做到了算理與算法相結合。
基于這兩者天壤之別,筆者有了深深的感觸,上述兩個案例讓我想到一個相同的問題,就是我們常說的備課之先“備學生”到底備到什么程度?對于學生的知識前測,教師心中有多大的把握?沒有對學情準確的偵察”,便絕對不會”打贏”有效教學乃至高效教學這一勝仗。很多教師在備學生的時候,是借用別人的眼光來估計自己的學生,看教參上是怎么說的。教參說這時的學生應該具有什么樣的知識經驗,教師便堅信自己的學生也定是如此了。沒有或者很少考慮到雖然是同一個年齡段的孩子,但還有諸多不同的因素:也許你的學生是后進的,他的基礎沒你想象的那么牢固;也許他是絕頂聰明的,學習進度已經超過好多課業了。
如上述案例中,關注學生轉化的思想就是本課時教學的重中之重.數學知識有著本身固有的結構體系,往往是新知孕伏于舊知,舊知識點是新知識點的生長點,數學教學如何讓知識體系由點到線,線到面,使知識結構“見木又見林”是十分必要的。案例1從整數乘法遷移到分數乘整數,想法是可取的,但整數乘法的意義在二上年級就已經出現,而且教材中沒有出現整數乘法的抽象表達方式(即整數乘法表示求幾個相同加數的和),對于五下年級的學生來說,遺忘程度可想而知。而案例2中,以五上年級的分數加法為基礎,讓學生自由探索,效果是非常明顯的。轉化是需要條件的.,只要“跳一跳”,就能摘到“桃子”,學生才會去嘗試。
今天這節課的算理看似簡單,其實理解還是有困難的.根據學生的認知心理,在遇到一個陌生的問題,如”1/5×3=?”時,學生對算法的興趣遠遠勝于算理.因為算法可以直接得到結果。一旦知道算法,多數學生會對算理失去興趣。甚至為了考試成績去死記硬背算理,算法與算理完全脫離。那么我們實際上不是教數學,而是在教一門計算程序:不是在培養研究者,而是在訓練操作工。這與”學生能夠獲得適應未來社會生活和進一步發展所必需的重要數學知識以及基本的思想方法和必要的應用技能”相違背的。
數學思想方法內容十分豐富,學生一接觸到數學知識,就聯系上許多數學思想方法。寓理于算的思想就是小學數學中的基本思想方法。在教學時,把重點放在讓學生充分體驗由直觀算理到抽象算法的過渡和演變過程,從而達到對算理的深層理解和對算法的切實把握。小學是打基礎的教育,有了算理的支撐,算法才會多樣化,課堂才會更開放。
課標中,原來講“雙基”,現在變成“四基”,多了基本思想、基本活動經驗,筆者認為,只有具備了基本思想、基本活動經驗,才能在思維上促進基本知識、基本技能的發展。不但教給學生一個表層的知識,更要給學生思維的方法與思想。