作為一名老師,常常要根據教學需要編寫教案,教案是教學活動的依據,有著重要的地位。大家想知道怎么樣才能寫一篇比較優質的教案嗎?以下我給大家整理了一些優質的教案范文,希望對大家能夠有所幫助。
人教版高一數學必修一教案篇一
用坐標法解決幾何問題的步驟:
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果“翻譯”成幾何結論、
重點與難點:直線與圓的方程的應用、
問 題設計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學例4,并完成練習題1、2、
生:建立適當的直角坐標系, 探求解決問題的方法、
8、小結:
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
生:閱讀教科書的例3,并完成第
問 題設計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學好“坐標法”解決問題的關鍵是什么?
人教版高一數學必修一教案篇二
教學目標。
理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導過程,掌握其應用.
教學重難點。
1.教學重點:兩角和、差正弦和正切公式的推導過程及運用;。
2.教學難點:兩角和與差正弦、余弦和正切公式的靈活運用.
教學過程。
人教版高一數學必修一教案篇三
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
一、提問題
1. 對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明.
二、變題目
1. 試求下列函數的反函數:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數函數的'有關概念
(1)把函數 叫做對數函數, 叫做對數函數的底數;
(2)以10為底數的對數函數 為常用對數函數;
(3)以無理數 為底數的對數函數 為自然對數函數.
2. 反函數的概念
在指數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ;在對數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ,像這樣的兩個函數叫做互為反函數.
3. 與對數函數有關的定義域的求法:
4. 舉例說明如何求反函數.
一、課外作業: 習題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數 的函數值恒為負值的 的取值范圍.
人教版高一數學必修一教案篇四
(2)了解區間的概念;。
(2)了解區間的概念就是指能夠體會用區間表示數集的意義和作用;。
【問題診斷分析】在本節課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
問題1:一枚炮彈發射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發:在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養學生的歸納、概況的能力。
人教版高一數學必修一教案篇五
1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數確定的。
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的`前幾項。
2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣。
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
(5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
(6)給出一些簡單數列的通項公式,可以求其項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
人教版高一數學必修一教案篇六
3.通過參與編題解題,激發學生學習的愛好.
教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復習提問
等差數列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
二.主體設計
通項公式反映了項與項數之間的函數關系,當等差數列的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數列中,首項,公差,則-397是該數列的第x項.
(2)已知等差數列中,首項,則公差
(3)已知等差數列中,公差,則首項
這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數列中,求的值.
(2)已知等差數列中,求.
若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數列的一個條件(等式),能否確定一個等差數列?學生回答后,教師再啟發,由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
如:已知等差數列中,…
由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題(3)已知等差數列中,求;;;;….
類似的還有
(4)已知等差數列中,求的值.
以上屬于對數列的項進行定量的研究,有無定性的判定?引出
3.研究等差數列的單調性
4.研究項的符號
這是為研究等差數列前項和的最值所做的預備工作.可配備的題目如
(1)已知數列的通項公式為,問數列從第幾項開始小于0?
(2)等差數列從第x項起以后每項均為負數.
三.小結
1.用方程思想熟悉等差數列通項公式;
2.用函數思想解決等差數列問題.
四.板書設計
等差數列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數列的單調性
4.研究項的符號
人教版高一數學必修一教案篇七
1.要讀好課本。
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規作業或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。
2.要記好筆記。
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鐘課堂效益。
3.要做好作業。
在課堂、課外練習中培養良好的作業習慣也很有必要.在作業中不但做得整齊、清潔,培養一種美感,還要有條理,這是培養邏輯能力的一條有效途徑,必須獨立完成。同時可以培養一種獨立思考和解題正確的責任感。在作業時要提倡效率,應該十分鐘完成的作業,不拖到半小時完成,疲疲憊憊的作業習慣使思維松散、精力不集中,這對培養數學能力是有害而無益的。
4.要寫好總結。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。“不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。”自然界適者生存的生物進化過程便是最好的例證。學習要經常總結規律,目的就是為了更一步的發展。
通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業,寫好每個單元的總結)的學習習慣。
1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
小編推薦:高一數學怎么學才能學好。
3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。
4.通過習題鞏固。數學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰術,只要求各位做到熟練為止。
5.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。
人教版高一數學必修一教案篇八
1.閱讀課本練習止。
2.回答問題:
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3.完成練習。
4.小結。
二、方法指導。
1.在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
2.本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數進行類比,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質。
一、提問題。
1.對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明。
二、變題目。
1.試求下列函數的反函數:
(1);(2);(3);(4)。
2.求下列函數的定義域:。
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數函數的有關概念。
(1)把函數叫做對數函數,叫做對數函數的底數。
(2)以10為底數的對數函數為常用對數函數。
(3)以無理數為底數的對數函數為自然對數函數。
2.反函數的概念。
在指數函數中,是自變量,是的函數,其定義域是,值域是;在對數函數中,是自變量,是的函數,其定義域是,值域是,像這樣的兩個函數叫做互為反函數。
3.與對數函數有關的定義域的求法:
4.舉例說明如何求反函數。
一、課外作業:習題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數的函數值恒為負值的的取值范圍。
人教版高一數學必修一教案篇九
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像。
二、重點難點分析。
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。
三、教法建議。
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數。反比例函數圖象出發,回憶圖象的增減性,從這點感性熟悉出發,通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來。在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。
(2)函數單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律。
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
人教版高一數學必修一教案篇十
本節課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學目標。
(1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。
(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養學生的應用意識。
(3)情感、態度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養學生相互交流、相互合作的精神。
三、設計思路。
本節課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。
教學的重點、難點。
(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。
(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學生現實分析。
本節首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學生在初中有一定基礎,在七年級上冊“從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異。
五、教學方法。
(1)教學方法及教學手段。
針對本節課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發現法。
在教學中,通過創設問題情境,充分調動學生學習的積極性和主動性,并引導啟發學生動眼、動腦、動手、同時采用多媒體的教學手段,加強直觀性和啟發性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
(2)學法指導。
力爭在新課程要求的大背景下組織教學,為學生創設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發揮教師的概括和引領的作用。